通过Python实现对SQL Server 数据文件大小的监控告警功能
作者:东山絮柳仔
1.需求背景
系统程序突然报错,报错信息如下:
The transaction log for database '@dbname' is full. To find out why space in the log cannot be reused, see the log_reuse_wait_desc column in sys.databases
此时查看log文件,已达2T。
当时的紧急处理方案是,移除掉镜像,修改数据库恢复模式(由full修改为simple),收缩日志。
为了防止类似问题再次发生,需对log 文件的大小进行监控,当到达阈值后,触发告警。
2.主要基础组件(类)
配置文件qqmssqltest_db_server_conf.ini
同过此配置文件获取DB Server信息、DB信息、UID信息、邮件服务器信息等。
[sqlserver] db_user = XXXXXX db_pwd = XXXXXXX [sqlserver_qq] db_host = 110.119.120.114 db_port = 1433 [windows] user = pwd = [mail] host = zheshiceshidemail.qq.com port = 25 user = pwd = sender = zhejiushiceshidebuyaodangzhen@qq.com
获取连接串的组件mssql_get_db_connect.py
# -*- coding: utf-8 -*- import sys import os import datetime import configparser import pymssql # pip3 install pymssql-2.1.4-cp37-cp37m-win_amd64.whl # pip3 install pymssql -i https://pypi.doubanio.com/simple # 获取连接串信息 def mssql_get_db_connect(db_host, db_port): db_host = db_host db_port = db_port db_ps_file = os.path.join(sys.path[0], "qqmssqltest_db_server_conf.ini") config = configparser.ConfigParser() config.read(db_ps_file, encoding="utf-8") db_user = config.get('sqlserver', 'db_user') db_pwd = config.get('sqlserver', 'db_pwd') conn = pymssql.connect(host=db_host, port=db_port, user=db_user, password=db_pwd, charset="utf8", login_timeout=5, timeout=600, autocommit=True) return conn
执行SQL语句的组件mysql_exec_sql.py
# -*- coding: utf-8 -*- import mysql_get_db_connect def mysql_exec_dml_sql(db_host, db_port, exec_sql): conn = mysql_get_db_connect.mysql_get_db_connect(db_host, db_port) with conn.cursor() as cursor_db: cursor_db.execute(exec_sql) conn.commit() def mysql_exec_select_sql(db_host, db_port, exec_sql): conn = mysql_get_db_connect.mysql_get_db_connect(db_host, db_port) with conn.cursor() as cursor_db: cursor_db.execute(exec_sql) sql_rst = cursor_db.fetchall() return sql_rst def mysql_exec_select_sql_include_colnames(db_host, db_port, exec_sql): conn = mysql_get_db_connect.mysql_get_db_connect(db_host, db_port) with conn.cursor() as cursor_db: cursor_db.execute(exec_sql) sql_rst = cursor_db.fetchall() col_names = cursor_db.description return sql_rst, col_names
发邮件的功能send_monitor_mail.py
# -*- coding: utf-8 -*- # pip3 install PyEmail import smtplib from email.mime.text import MIMEText import configparser import os import sys # 发送告警邮件 def send_monitor_mail(mail_subject, mail_body, mail_receivers="testwukongbaigujing@qq.com"): db_ps_file = os.path.join(sys.path[0], "qqmssqltest_db_server_conf.ini") config = configparser.ConfigParser() config.read(db_ps_file, encoding="utf-8") mail_host = config.get('mail', 'host') mail_port = config.get('mail', 'port') # mail_user = config.get('mail', 'user') # mail_pwd = config.get('mail', 'pwd') sender = config.get('mail', 'sender') # receivers = config.get('mail', 'receivers') # 发送HTML格式邮件 message = MIMEText(mail_body, 'html', 'utf-8') # message = MIMEText(mail_body, 'plain', 'utf-8') message['subject'] = mail_subject message['From'] = sender message['To'] = mail_receivers try: smtpObj = smtplib.SMTP() smtpObj.connect(mail_host, mail_port) # 25 为 SMTP 端口号 # SMTP AUTH extension not supported by server. # https://github.com/miguelgrinberg/microblog/issues/76 # smtpObj.ehlo() # smtpObj.starttls() # smtpObj.login(mail_user, mail_pwd) smtpObj.sendmail(sender, mail_receivers, message.as_string()) smtpObj.quit() print("邮件发送成功") except Exception as e: print(e) # except smtplib.SMTPException: # print("Error: 无法发送邮件")
3.主要功能代码
收集到的DB数据文件的信息保存到表mssql_dblogsize中,其建表的脚本如下:
CREATE TABLE [dbo].[mssql_dblogsize]( [id] [int] IDENTITY(1,1) NOT NULL, [createtime] [datetime] NULL, [vip] [nvarchar](100) NULL, [port] [nvarchar](100) NULL, [Environment] [nvarchar](200) NULL, [Dbname] [varchar](200) NULL, [Logical_Name] [varchar](200) NULL, [Physical_Name] [varchar](1500) NULL, [Size] [bigint] NULL, PRIMARY KEY CLUSTERED ( [id] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] GO ALTER TABLE [dbo].[mssql_dblogsize] ADD DEFAULT (getdate()) FOR [createtime] GO
为了方便对表mssql_dblogsize的数据进行管理和展示,在其基础上抽象加工出了一个视图v_mssql_dblogsize,注意Size大小的转换(Size/128/1024 as SizeGB)
创建视图的脚本如下:
CREATE view [dbo].[v_mssql_dblogsize] as SELECT [id] ,[createtime] ,[vip] ,[port] ,[Environment] ,[Dbname] ,[Logical_Name] ,[Physical_Name] ,Size/128/1024 as SizeGB FROM [dbo].[mssql_dblogsize] where size >50*128*1024 and Physical_Name like '%ldf%' GO
本测试实例使用的数据库为qqDB,监控的各个DB Server保存在了表QQDBServer中,注意Port 不一定为标准端口1433.
collect_mssql_dblogsize_info.py
# -*- coding: utf-8 -*- import sys import os import configparser import pymssql import mssql_get_db_connect import mssql_exec_sql from datetime import datetime def collect_mssql_dblogsize_info(): db_ps_file = os.path.join(sys.path[0], "qqmssqltest_db_server_conf.ini") config = configparser.ConfigParser() config.read(db_ps_file, encoding="utf-8") m_db_host = config.get('sqlserver_qq', 'db_host') m_db_port = config.getint('sqlserver_qq', 'db_port') # 获取需要遍历的DB列表 exec_sql_1 = """ SELECT IP, case Port when '1444,1433' then '1433' else Port end as Port, Environment FROM qqDB.dbo.QQDBServer where InUse =1 AND ServerType IN ('SQL') and IP=VIP ; """ sql_rst_1 = mssql_exec_sql.mssql_exec_select_sql(m_db_host, m_db_port, exec_sql_1) for j in sql_rst_1: db_host_2 = j[0] db_port_2 = j[1] db_Environment = j[2] exec_sql_2 = """ select '""" + db_host_2 + """' as vip, '""" + db_port_2 + """' as port, '""" + db_Environment + """' as Environment,DB_NAME(database_id) AS DatabaseName, Name AS Logical_Name, Physical_Name, size FROM master.sys.master_files; """ try: sql_rst_2 = mssql_exec_sql.mssql_exec_select_sql(db_host_2, db_port_2, exec_sql_2) except Exception as e: print(e) for k in sql_rst_2: exec_sql_3 = """ insert into qqDB..mssql_dblogsize([vip], [port], [Environment], [Dbname], [Logical_Name], [Physical_Name], [Size]) values('%s', '%s', '%s', '%s', '%s', '%s', '%s'); """ conn = mssql_get_db_connect.mssql_get_db_connect(m_db_host, m_db_port) with conn.cursor() as cursor_db: cursor_db.execute(exec_sql_3 % (k[0], k[1], k[2], k[3], k[4], k[5], k[6] )) conn.commit() collect_mssql_dblogsize_info()
告警邮件的功能实现为mssql_alert_dblogsize.py,此份代码的告警阈值设置的为50G,数据来自于视图v_mssql_dblogsize。
# -*- coding: utf-8 -*- import sys import os import configparser import pymssql import mssql_get_db_connect import mssql_exec_sql import datetime import send_monitor_mail import pandas as pd def mssql_alert_dblogsize(): mail_subject = "SQL Server DB Log Size Greater than 50G, please check!!! " mail_receivers = "testDBAgrp@qtiantianq.com" db_ps_file = os.path.join(sys.path[0], "qqmssqltest_db_server_conf.ini") config = configparser.ConfigParser() config.read(db_ps_file, encoding="utf-8") m_db_host = config.get('sqlserver_qq', 'db_host') m_db_port = config.getint('sqlserver_qq', 'db_port') # 获取需要遍历的DB列表 exec_sql_4 = """ SELECT [vip] as IP,[port],[Environment],[Dbname] ,[Logical_Name],[Physical_Name],[SizeGB],[createtime] FROM qqDB.[dbo].[v_mssql_dblogsize] order by VIP,Dbname; """ sql_rst_4, col_name = mssql_exec_sql.mssql_exec_select_sql_include_colnames(m_db_host, m_db_port, exec_sql_4) # print(sql_rst_4) if len(sql_rst_4): mail_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') columns = [] for i in range(len(col_name)): columns.append(col_name[i][0]) df = pd.DataFrame(columns=columns) for i in range(len(sql_rst_4)): df.loc[i] = list(sql_rst_4[i]) mail_body = df.to_html(index=False, justify="left").replace('<th>', '<th style = "color:red; text-align:left; background-color: yellow">') mail_html = "<html><body><h4>" + "Deal All : " + "<br><h4>" + "以下数据库的db log文件,已大于50G.请及时检查,谢谢! " + "<br><h4>" + mail_body + "</body></html>" send_monitor_mail.send_monitor_mail(mail_subject=mail_subject, mail_body=mail_html, mail_receivers=mail_receivers) mssql_alert_dblogsize()
4.实现
定时任务是通过windows的计划任务来实现的,在此不做过多的叙述。告警邮件的部分截图如下:
5.附录
1.报错定位,判断是不是log文件过大
https://blog.csdn.net/weixin_30785593/article/details/99912405
2.关于为什么数据库log文件过大,我们可以参考以下分享的文章
https://blog.csdn.net/chinadm123/article/details/44941275
到此这篇关于通过Python实现对SQL Server 数据文件大小的监控告警的文章就介绍到这了,更多相关PythonSQL Server 数据监控告警内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!