python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > 爬取各省降水量

python爬取各省降水量及可视化详解

作者:天Ye浪Sir

本文是学习python,故选取了python最常用的爬虫作为实操训练同时,还添加了可视化和GUI入门的内容使爬取的内容应用更丰富,需要的朋友可以参考下

在具体数据的选取上,我爬取的是各省份降水量实时数据

话不多说,开始实操

正文 

1.爬取数据

f—string:

url_a= f'http://www.weather.com.cn/weather1dn/101{a}0101.shtml'

f-string 用大括号 {} 表示被替换字段,其中直接填入替换内容

将城市和降水量相对应后存入字典再打印

代码:

from lxml import etree
from selenium import webdriver
import re
city = [''for n in range(34)]   #存放城市列表
rain = [''for n in range(34)]   #存放有关降雨量信息的数值
rain_item = []
driver = webdriver.Chrome(executable_path='chromedriver')   #使用chrome浏览器打开
for a in range(1,5):      #直辖市数据
    url_a= f'http://www.weather.com.cn/weather1dn/1010{a}0100.shtml'  #网址
    driver.get(url_a)    #打开网址
    rain_list = []
    city_list = []
    resp_text = driver.page_source
    page_html = etree.HTML(resp_text)
    city_list = page_html.xpath('/html/body/div[4]/div[2]/a')[0]    #通过xpath爬取城市名称
    rain_list = page_html.xpath('//*[@id="weatherChart"]/div[2]/p[5]')[0]   #通过xpath爬取降雨量数据
    city[a-1] = city_list.text  #存入城市列表
    rain[a-1] = re.findall(r"\d+\.?\d*",rain_list.text)[0] #存入数值
for a in range(5,10):      #一位数字网址数据
    url_a= f'http://www.weather.com.cn/weather1dn/1010{a}0101.shtml'
    driver.get(url_a)
    rain_list = []
    city_list = []
    resp_text = driver.page_source
    page_html = etree.HTML(resp_text)
    city_list = page_html.xpath('/html/body/div[4]/div[2]/a')[0]    #通过xpath爬取城市名称
    rain_list = page_html.xpath('//*[@id="weatherChart"]/div[2]/p[5]')[0]   #通过xpath爬取降雨量数据
    city[a-1] = city_list.text     #存入城市列表
    rain[a-1] = re.findall(r"\d+\.?\d*",rain_list.text)[0] #存入数值
for a in range(10,35):      #二位数字网址数据
    url_a= f'http://www.weather.com.cn/weather1dn/101{a}0101.shtml'
    driver.get(url_a)
    rain_list = []
    city_list = []
    resp_text = driver.page_source
    page_html = etree.HTML(resp_text)
    city_list = page_html.xpath('/html/body/div[4]/div[2]/a')[0]    #通过xpath爬取城市名称
    rain_list = page_html.xpath('//*[@id="weatherChart"]/div[2]/p[5]')[0]   #通过xpath爬取降雨量数据
    city[a-1] = city_list.text  #存入城市列表
    rain[a-1] = re.findall(r"\d+\.?\d*",rain_list.text)[0] #存入数值
d = dict(zip(city,rain))  #将城市和降水量的列表合成为字典
for k,v in d.items():  #str转float类型
    rain_item.append(float(v))
print(d)

在对爬取的内容进行处理时,可能会因为数据的类型而报错,如爬下来的数据为str类型,而排序需要数字类型,故需要进行float类型转化

使用该爬取方法,是模拟用户打开网页,并且会在电脑上进行显示。在爬取实验进行中途,中国天气网进行了网址更新,原网址出现了部分城市数据无法显示的问题,但当刷新界面后,数据可正常显示,此时可采用模拟鼠标点击刷新的方法避免错误。由于后续找到了新网址,故将这一方法省去。

2.数据可视化

代码:

#-*- codeing = utf-8 -*-
import matplotlib.pyplot as plt
from lxml import etree
from selenium import webdriver
import re
import matplotlib
matplotlib.rc("font",family='YouYuan')
city = [''for n in range(34)]   #存放城市列表
rain = [''for n in range(34)]   #存放有关降雨量信息的数值
driver = webdriver.Chrome(executable_path='chromedriver')   #使用chrome浏览器打开
for a in range(1,5):      #直辖市数据
    url_a= f'http://www.weather.com.cn/weather1dn/1010{a}0100.shtml'  #网址
    driver.get(url_a)    #打开网址
    rain_list = []
    city_list = []
    resp_text = driver.page_source
    page_html = etree.HTML(resp_text)
    city_list = page_html.xpath('/html/body/div[4]/div[2]/a')[0]    #通过xpath爬取城市名称
    rain_list = page_html.xpath('//*[@id="weatherChart"]/div[2]/p[5]')[0]   #通过xpath爬取降雨量数据
    city[a-1] = city_list.text  #存入城市列表
    rain[a-1] = re.findall(r"\d+\.?\d*",rain_list.text)[0] #存入数值
for a in range(5,10):      #非直辖一位数字网址数据
    url_a= f'http://www.weather.com.cn/weather1dn/1010{a}0101.shtml'
    driver.get(url_a)
    rain_list = []
    city_list = []
    resp_text = driver.page_source
    page_html = etree.HTML(resp_text)
    city_list = page_html.xpath('/html/body/div[4]/div[2]/a')[0]    #通过xpath爬取城市名称
    rain_list = page_html.xpath('//*[@id="weatherChart"]/div[2]/p[5]')[0]   #通过xpath爬取降雨量数据
    city[a-1] = city_list.text  #存入城市列表
    rain[a-1] = re.findall(r"\d+\.?\d*",rain_list.text)[0] #存入数值
for a in range(10,35):      #非直辖二位数字网址数据
    url_a= f'http://www.weather.com.cn/weather1dn/101{a}0101.shtml'
    driver.get(url_a)
    rain_list = []
    city_list = []
    resp_text = driver.page_source
    page_html = etree.HTML(resp_text)
    city_list = page_html.xpath('/html/body/div[4]/div[2]/a')[0]    #通过xpath爬取城市名称
    rain_list = page_html.xpath('//*[@id="weatherChart"]/div[2]/p[5]')[0]   #通过xpath爬取降雨量数据
    city[a-1] = city_list.text  #存入城市列表
    rain[a-1] = re.findall(r"\d+\.?\d*",rain_list.text)[0] #存入数值
if len(rain)%2 == 0:        #寻找中值
    medium = int(len(rain)/2)
else:
    medium = int(len(rain)/2)+1
medium_text = "中位值:" + rain[medium]
d = dict(zip(city,rain))  #将城市和降水量的列表合成为字典
rain_item = []
city_min = []
city_max = []
for k,v in d.items():
    rain_item.append(float(v))
average_rain = sum(rain_item)/len(rain_item)
average_text = "平均值:"+ str(average_rain)
max_rain = max(rain_item)  #最大值
min_rain = min(rain_item)  #最小值
for k,v in d.items():
    if float(v) == min_rain:
        city_min.append(k)
min_text = "降雨量最小的城市:"+str(city_min)+" 最小值:"+str(min_rain)
for k,v in d.items():
    if float(v) ==max_rain:
        city_max.append(k)
max_text = "降雨量最大的城市:"+str(city_max)+" 最大值:"+str(max_rain)
plt.bar(range(len(d)), rain_item, align='center')
plt.xticks(range(len(d)), list(d.keys()))
plt.xlabel('城市',fontsize=20)
plt.ylabel('降水量',fontsize=20)
plt.text(0,12,average_text,fontsize=6)
plt.text(0,13,medium_text,fontsize=6)
plt.text(0,14,max_text,fontsize=6)
plt.text(0,15,min_text,fontsize=6)
plt.show()

2.运行界面

在这里插入图片描述

3.互动界面

使用tkinter库进行GUI的构建使用button函数实现交互,调用编写的get函数获取对用户输入的内容进行获取并使用循环进行遍历处理,若城市输入正确,则在界面上输出当地的降水量代码:

#-*- codeing = utf-8 -*-
from lxml import etree
from selenium import webdriver
import re
import matplotlib
matplotlib.rc("font",family='YouYuan')
from tkinter import *
import tkinter as tk
city = [''for n in range(34)]   #存放城市列表
rain = [''for n in range(34)]   #存放有关降雨量信息的数值
driver = webdriver.Chrome(executable_path='chromedriver')   #使用chrome浏览器打开
for a in range(1,5):      #直辖市数据
    url_a= f'http://www.weather.com.cn/weather1dn/1010{a}0100.shtml'  #网址
    driver.get(url_a)    #打开网址
    rain_list = []
    city_list = []
    resp_text = driver.page_source
    page_html = etree.HTML(resp_text)
    city_list = page_html.xpath('/html/body/div[4]/div[2]/a')[0]    #通过xpath爬取城市名称
    rain_list = page_html.xpath('//*[@id="weatherChart"]/div[2]/p[5]')[0]   #通过xpath爬取降雨量数据
    city[a-1] = city_list.text  #存入城市列表
    rain[a-1] = re.findall(r"\d+\.?\d*",rain_list.text)[0] #存入数值
for a in range(5,10):      #非直辖一位数字网址数据
    url_a= f'http://www.weather.com.cn/weather1dn/1010{a}0101.shtml'
    driver.get(url_a)
    rain_list = []
    city_list = []
    resp_text = driver.page_source
    page_html = etree.HTML(resp_text)
    city_list = page_html.xpath('/html/body/div[4]/div[2]/a')[0]    #通过xpath爬取城市名称
    rain_list = page_html.xpath('//*[@id="weatherChart"]/div[2]/p[5]')[0]   #通过xpath爬取降雨量数据
    city[a-1] = city_list.text  #存入城市列表
    rain[a-1] = re.findall(r"\d+\.?\d*",rain_list.text)[0] #存入数值
for a in range(10,35):      #非直辖二位数字网址数据
    url_a= f'http://www.weather.com.cn/weather1dn/101{a}0101.shtml'
    driver.get(url_a)
    rain_list = []
    city_list = []
    resp_text = driver.page_source
    page_html = etree.HTML(resp_text)
    city_list = page_html.xpath('/html/body/div[4]/div[2]/a')[0]    #通过xpath爬取城市名称
    rain_list = page_html.xpath('//*[@id="weatherChart"]/div[2]/p[5]')[0]   #通过xpath爬取降雨量数据
    city[a-1] = city_list.text  #存入城市列表
    rain[a-1] = re.findall(r"\d+\.?\d*",rain_list.text)[0] #存入数值
d = dict(zip(city,rain))  #将城市和降水量的列表合成为字典
root=tk.Tk()
root.title('降水量查询')
root.geometry('500x200')
def get():
    values = entry.get()
    for k,v in d.items():
        if k == values:
            label = Label(root, text= v+'mm')
            label.pack()
frame = Frame(root)
frame.pack()
u1 = tk.StringVar()
entry = tk.Entry(frame, width=20, textvariable=u1,  relief="sunken")
entry.pack(side="left")
frame1 = Frame(root)
frame1.pack()
btn1=Button(frame1, text="查询", width=20, height=1, relief=GROOVE, command=lambda :get())
btn1.pack(side="left")
root.mainloop()

4.运行界面

在这里插入图片描述 

写在最后

在爬取天气的过程中,仅发现中国天气网有各省份降水量的数据,可见我国在数据开源方面还有很长的路要走

到此这篇关于python爬取各省降水量及可视化详解的文章就介绍到这了,更多相关python爬取请搜索脚本之家以前的文章或继续浏览下面的相关文章,希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文