解决使用pandas聚类时的小坑
作者:填坑小霸王
这篇文章主要介绍了解决使用pandas聚类时的小坑,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
问题背景:
之前运行测试好好的程序,忽然出现了报错,还是merge时候的类型错误,这个bug有点蹊跷。
问题分析:
代码:进行聚类之后计算平均值与方差
tmp_df = df[['object1', 'float']].groupby(['object1']).head(20).groupby(['object1'])['float'].agg(['mean', 'sum']).reset_index()
这个输出的就是原本的数据类型:一个object,一个float64
tmp_df = http_df[['object1', 'object2', 'float']].groupby(['object1', 'object2']).head(20).groupby(['object1', 'object2'])['float'].agg(['mean']).reset_index()
这个输出就会修改object为float,
差别只在于一个是使用一个特征进行聚类,一个是使用两个特征进行聚类
问题原因(个人猜测,仅供参考):
pandas进行聚类的时候,就算之前已经定好各个列的类型,如果里边没有数据的时候,使用一列进行聚类不会修改列的类型,但是如果同时使用两列进行聚类就会修改列的类型。
所以才会出现后面进行merge时候,类型不同报错
有数据输入的时候这个报错不会发生,没有数据的时候就会发生。
补充:python数据处理--按照数据差值大小进行聚类(归类)
近来在做数据处理的工作中,遇到了数据分类的问题,利用python的各种方便库,写了这么个以数据差值大小进行归类的方法。
应用场景:
有一批数据集,如list=[1,2,3,4,9,10,11,20,20,1,1.1,2.1,100],将其按照数值大小进行归类,即数值比较接近的归为一类,故需要先设置一个阈值,以进行划分。
具体实现如下:
其中输入参数Data_set为输入的数据集,可以为列表、数组、Series、DataFrame。threshold为数据大小分类的门限值。
输出class_k为数据归类列表集合,index_list为数据归类对应的索引集合。
def threshold_cluster(Data_set,threshold): #统一格式化数据为一维数组 stand_array=np.asarray(Data_set).ravel('C') stand_Data=Series(stand_array) index_list,class_k=[],[] while stand_Data.any(): if len(stand_Data)==1: index_list.append(list(stand_Data.index)) class_k.append(list(stand_Data)) stand_Data=stand_Data.drop(stand_Data.index) else: class_data_index=stand_Data.index[0] class_data=stand_Data[class_data_index] stand_Data=stand_Data.drop(class_data_index) if (abs(stand_Data-class_data)<=threshold).any(): args_data=stand_Data[abs(stand_Data-class_data)<=threshold] stand_Data=stand_Data.drop(args_data.index) index_list.append([class_data_index]+list(args_data.index)) class_k.append([class_data]+list(args_data)) else: index_list.append([class_data_index]) class_k.append([class_data]) return index_list,class_k
测试如下:
import numpy as np from pandas import Series,DataFrame Data_set=[1,1.1,0.9,-5,2,100,99,-4.2,10000,0] index_list,class_k=threshold_cluster(Data_set,5) index_list Out[10]: [[0, 1, 2, 4, 9], [3, 7], [5, 6], [8]] class_k Out[11]: [[1.0, 1.1, 0.9, 2.0, 0.0], [-5.0, -4.2], [100.0, 99.0], [10000.0]]
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。
您可能感兴趣的文章:
- Python基础之pandas数据合并
- python-pandas创建Series数据类型的操作
- Python数据分析之pandas函数详解
- python基于Pandas读写MySQL数据库
- pandas读取excel时获取读取进度的实现
- pandas中.loc和.iloc以及.at和.iat的区别说明
- 浅谈Pandas dataframe数据处理方法的速度比较
- pandas 使用merge实现百倍加速的操作
- 详细介绍在pandas中创建category类型数据的几种方法
- python中pandas.read_csv()函数的深入讲解
- pandas 颠倒列顺序的两种解决方案
- pandas调整列的顺序以及添加列的实现
- pandas快速处理Excel,替换Nan,转字典的操作
- Python基础之教你怎么在M1系统上使用pandas