Pytorch之扩充tensor的操作
作者:有为少年
这篇文章主要介绍了Pytorch之扩充tensor的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
我就废话不多说了,大家还是直接看代码吧~
b = torch.zeros((3, 2, 6, 6)) a = torch.zeros((3, 2, 1, 1)) a.expand_as(b).size() Out[32]: torch.Size([3, 2, 6, 6]) a = torch.zeros((3, 2, 2, 1)) a.expand_as(b).size() Traceback (most recent call last): File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-34-972575f79e92>", line 1, in <module> a.expand_as(b).size() RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 2. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 2, 1] a = torch.zeros((3, 2, 1, 2)) a.expand_as(b).size() Traceback (most recent call last): File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-36-972575f79e92>", line 1, in <module> a.expand_as(b).size() RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 1, 2] a = torch.zeros((3, 2, 2, 2)) a.expand_as(b).size() Traceback (most recent call last): File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-38-972575f79e92>", line 1, in <module> a.expand_as(b).size() RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 2, 2] a = torch.zeros((3, 2, 6, 2)) a.expand_as(b).size() Traceback (most recent call last): File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-40-972575f79e92>", line 1, in <module> a.expand_as(b).size() RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 6, 2] a = torch.zeros((3, 2, 6, 1)) a.expand_as(b).size() Out[44]: torch.Size([3, 2, 6, 6]) a = torch.zeros((3, 2, 1, 6)) a.expand_as(b).size() Out[46]: torch.Size([3, 2, 6, 6])
tensor.expand_as在这里用于扩展tensor到目标形状,常用的多是在H和W方向上的扩展。
假设目标形状为N, C, H, W,则要求tensor.size()=n, c, h, w(这里假设N,C不变):
1、h=w=1
2、h=1, w!=1
3、h!=1, w=1
补充:tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度
在利用tensorflow进行文本挖掘工作的时候,经常涉及到维度扩展和压缩工作。
比如对文本进行embedding操作完成之后,若要进行卷积操作,就需要对embedded的向量扩展维度,将[batch_size, embedding_dims]扩展成为[batch_size, embedding_dims, 1],利用tf.expand_dims(input, -1)就可实现,反过来用squeeze(input, -1)或者tf.squeeze(input)也可以把最第三维去掉。
tf.expand_dims()
tf.squeeze()
tf.expand_dims()
tf.expand_dims(input, axis=None, name=None, dim=None)
在第axis位置增加一个维度.
给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数。
如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。
例子
# 't' is a tensor of shape [2] shape(expand_dims(t, 0)) ==> [1, 2] shape(expand_dims(t, 1)) ==> [2, 1] shape(expand_dims(t, -1)) ==> [2, 1] # 't2' is a tensor of shape [2, 3, 5] shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5] shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5] shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
tf.squeeze()
tf.squeeze(input, axis=None, name=None, squeeze_dims=None)
直接上例子
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t)) ==> [2, 3] # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。