python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python爬取豆瓣Top电影

Python爬虫入门教程01之爬取豆瓣Top电影

作者:嗨学编程

这篇文章主要介绍了Python爬虫入门教程01:豆瓣Top电影爬取的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理

基本开发环境

相关模块的使用

安装Python并添加到环境变量,pip安装需要的相关模块即可。

爬虫基本思路

在这里插入图片描述

一、明确需求

爬取豆瓣Top250排行电影信息

在这里插入图片描述 

二、发送请求

Python中的大量开源的模块使得编码变的特别简单,我们写爬虫第一个要了解的模块就是requests。

在这里插入图片描述
在这里插入图片描述

请求url地址,使用get请求,添加headers请求头,模拟浏览器请求,网页会给你返回response对象

# 模拟浏览器发送请求
import requests
url = 'https://movie.douban.com/top250'
headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}
response = requests.get(url=url, headers=headers)
print(response)

在这里插入图片描述

200是状态码,表示请求成功

2xx (成功)
3xx (重定向)
4xx(请求错误)
5xx(服务器错误)

常见状态码

通常,这只是暂时状态。

 三、获取数据

import requests
url = 'https://movie.douban.com/top250'
headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}
response = requests.get(url=url, headers=headers)
print(response.text)

在这里插入图片描述

requests.get(url=url, headers=headers) 请求网页返回的是response对象

response.text: 获取网页文本数据

response.json: 获取网页json数据

这两个是用的最多的,当然还有其他的

apparent_encoding cookies  	history
iter_lines  ok						close   
elapsed  is_permanent_redirect 	json   
raise_for_status	 connection  	encoding  
is_redirect  links   	raw   
content  headers  	iter_content  
next   reason					url

四、解析数据

常用解析数据方法: 正则表达式、css选择器、xpath、lxml…

常用解析模块:bs4、parsel…

我们使用的是 parsel 无论是在之前的文章,还是说之后的爬虫系列文章,我都会使用 parsel 这个解析库,无它就是觉得它比bs4香。

parsel 是第三方模块,pip install parsel 安装即可

parsel 可以使用 css、xpath、re解析方法

在这里插入图片描述

所有的电影信息都包含在 li 标签当中。

# 把 response.text 文本数据转换成 selector 对象
selector = parsel.Selector(response.text)
# 获取所有li标签
lis = selector.css('.grid_view li')
# 遍历出每个li标签内容
for li in lis:
 # 获取电影标题 hd 类属性 下面的 a 标签下面的 第一个span标签里面的文本数据 get()输出形式是 字符串获取一个 getall() 输出形式是列表获取所有
 title = li.css('.hd a span:nth-child(1)::text').get() # get()输出形式是 字符串
 movie_list = li.css('.bd p:nth-child(1)::text').getall() # getall() 输出形式是列表
 star = movie_list[0].strip().replace('\xa0\xa0\xa0', '').replace('/...', '')
 movie_info = movie_list[1].strip().split('\xa0/\xa0') # ['1994', '美国', '犯罪 剧情']
 movie_time = movie_info[0] # 电影上映时间
 movie_country = movie_info[1] # 哪个国家的电影
 movie_type = movie_info[2] # 什么类型的电影
 rating_num = li.css('.rating_num::text').get() # 电影评分
 people = li.css('.star span:nth-child(4)::text').get() # 评价人数
 summary = li.css('.inq::text').get() # 一句话概述
 dit = {
 '电影名字': title,
 '参演人员': star,
 '上映时间': movie_time,
 '拍摄国家': movie_country,
 '电影类型': movie_type,
 '电影评分': rating_num,
 '评价人数': people,
 '电影概述': summary,
 }
 # pprint 格式化输出模块
 pprint.pprint(dit)

在这里插入图片描述

以上的知识点使用到了

所以扎实基础是很有必要的。不然你连代码都不知道为什么要这样写。

五、保存数据(数据持久化)

常用的保存数据方法 with open

像豆瓣电影信息这样的数据,保存到Excel表格里面会更好。

所以需要使用到 csv 模块

# csv模块保存数据到Excel
f = open('豆瓣电影数据.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['电影名字', '参演人员', '上映时间', '拍摄国家', '电影类型',
      '电影评分', '评价人数', '电影概述'])

csv_writer.writeheader() # 写入表头

在这里插入图片描述
在这里插入图片描述

这就是爬取了数据保存到本地了。这只是一页的数据,爬取数据肯定不只是爬取一页数据。想要实现多页数据爬取,就要分析网页数据的url地址变化规律。

在这里插入图片描述

可以清楚看到每页url地址是 25 递增的,使用for循环实现翻页操作

for page in range(0, 251, 25):
 url = f'https://movie.douban.com/top250?start={page}&filter='

完整实现代码

""""""
import pprint
import requests
import parsel
import csv
'''
1、明确需求:
 爬取豆瓣Top250排行电影信息
 电影名字
 导演、主演
 年份、国家、类型
 评分、评价人数
 电影简介
'''
# csv模块保存数据到Excel
f = open('豆瓣电影数据.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['电影名字', '参演人员', '上映时间', '拍摄国家', '电影类型',
      '电影评分', '评价人数', '电影概述'])

csv_writer.writeheader() # 写入表头

# 模拟浏览器发送请求
for page in range(0, 251, 25):
 url = f'https://movie.douban.com/top250?start={page}&filter='
 headers = {
 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
 }
 response = requests.get(url=url, headers=headers)
 # 把 response.text 文本数据转换成 selector 对象
 selector = parsel.Selector(response.text)
 # 获取所有li标签
 lis = selector.css('.grid_view li')
 # 遍历出每个li标签内容
 for li in lis:
 # 获取电影标题 hd 类属性 下面的 a 标签下面的 第一个span标签里面的文本数据 get()输出形式是 字符串获取一个 getall() 输出形式是列表获取所有
 title = li.css('.hd a span:nth-child(1)::text').get() # get()输出形式是 字符串
 movie_list = li.css('.bd p:nth-child(1)::text').getall() # getall() 输出形式是列表
 star = movie_list[0].strip().replace('\xa0\xa0\xa0', '').replace('/...', '')
 movie_info = movie_list[1].strip().split('\xa0/\xa0') # ['1994', '美国', '犯罪 剧情']
 movie_time = movie_info[0] # 电影上映时间
 movie_country = movie_info[1] # 哪个国家的电影
 movie_type = movie_info[2] # 什么类型的电影
 rating_num = li.css('.rating_num::text').get() # 电影评分
 people = li.css('.star span:nth-child(4)::text').get() # 评价人数
 summary = li.css('.inq::text').get() # 一句话概述
 dit = {
  '电影名字': title,
  '参演人员': star,
  '上映时间': movie_time,
  '拍摄国家': movie_country,
  '电影类型': movie_type,
  '电影评分': rating_num,
  '评价人数': people,
  '电影概述': summary,
 }
 pprint.pprint(dit)
 csv_writer.writerow(dit)

实现效果

在这里插入图片描述
在这里插入图片描述

到此这篇关于Python爬虫入门教程01之爬取豆瓣Top电影的文章就介绍到这了,更多相关Python爬取豆瓣Top电影内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文