python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > pytorch加载语音类自定义数据集

pytorch加载语音类自定义数据集的方法教程

作者:凌逆战

这篇文章主要给大家介绍了关于pytorch加载语音类自定义数据集的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

前言

  pytorch对一下常用的公开数据集有很方便的API接口,但是当我们需要使用自己的数据集训练神经网络时,就需要自定义数据集,在pytorch中,提供了一些类,方便我们定义自己的数据集合

第一步

  自定义的 Dataset 都需要继承 torch.utils.data.Dataset 类,并且重写它的两个成员方法:

from torch.utils.data import Dataset


class AudioDataset(Dataset):
 def __init__(self, ...):
 """类的初始化"""
 pass

 def __getitem__(self, item):
 """每次怎么读数据,返回数据和标签"""
 return data, label

 def __len__(self):
 """返回整个数据集的长度"""
 return total

注意事项:Dataset只负责数据的抽象,一次调用getiitem只返回一个样本

案例:

  文件目录结构

目的:读取p225文件夹中的音频数据

class AudioDataset(Dataset):
 def __init__(self, data_folder, sr=16000, dimension=8192):
 self.data_folder = data_folder
 self.sr = sr
 self.dim = dimension

 # 获取音频名列表
 self.wav_list = []
 for root, dirnames, filenames in os.walk(data_folder):
 for filename in fnmatch.filter(filenames, "*.wav"): # 实现列表特殊字符的过滤或筛选,返回符合匹配“.wav”字符列表
 self.wav_list.append(os.path.join(root, filename))

 def __getitem__(self, item):
 # 读取一个音频文件,返回每个音频数据
 filename = self.wav_list[item]
 wb_wav, _ = librosa.load(filename, sr=self.sr)

 # 取 帧
 if len(wb_wav) >= self.dim:
 max_audio_start = len(wb_wav) - self.dim
 audio_start = np.random.randint(0, max_audio_start)
 wb_wav = wb_wav[audio_start: audio_start + self.dim]
 else:
 wb_wav = np.pad(wb_wav, (0, self.dim - len(wb_wav)), "constant")

 return wb_wav, filename

 def __len__(self):
 # 音频文件的总数
 return len(self.wav_list)

注意事项:19-24行:每个音频的长度不一样,如果直接读取数据返回出来的话,会造成维度不匹配而报错,因此只能每次取一个音频文件读取一帧,这样显然并没有用到所有的语音数据,

第二步

  实例化 Dataset 对象

Dataset= AudioDataset("./p225", sr=16000)

如果要通过batch读取数据的可直接跳到第三步,如果你想一个一个读取数据的可以看我接下来的操作

# 实例化AudioDataset对象
train_set = AudioDataset("./p225", sr=16000)

for i, data in enumerate(train_set):
 wb_wav, filname = data
 print(i, wb_wav.shape, filname)

 if i == 3:
 break
 # 0 (8192,) ./p225\p225_001.wav
 # 1 (8192,) ./p225\p225_002.wav
 # 2 (8192,) ./p225\p225_003.wav
 # 3 (8192,) ./p225\p225_004.wav

第三步

  如果想要通过batch读取数据,需要使用DataLoader进行包装

为何要使用DataLoader?

  pytorch提供的 DataLoader 封装了上述的功能,这样使用起来更方便。

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False)

参数:

返回:数据加载器

案例:

# 实例化AudioDataset对象
train_set = AudioDataset("./p225", sr=16000)
train_loader = DataLoader(train_set, batch_size=8, shuffle=True)

for (i, data) in enumerate(train_loader):
 wav_data, wav_name = data
 print(wav_data.shape) # torch.Size([8, 8192])
 print(i, wav_name)
 # ('./p225\\p225_293.wav', './p225\\p225_156.wav', './p225\\p225_277.wav', './p225\\p225_210.wav',
 # './p225\\p225_126.wav', './p225\\p225_021.wav', './p225\\p225_257.wav', './p225\\p225_192.wav')

我们来吃几个栗子消化一下:

栗子1

  这个例子就是本文一直举例的,栗子1只是合并了一下而已

  文件目录结构

目的:读取p225文件夹中的音频数据

import fnmatch
import os
import librosa
import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader


class Aduio_DataLoader(Dataset):
 def __init__(self, data_folder, sr=16000, dimension=8192):
 self.data_folder = data_folder
 self.sr = sr
 self.dim = dimension

 # 获取音频名列表
 self.wav_list = []
 for root, dirnames, filenames in os.walk(data_folder):
  for filename in fnmatch.filter(filenames, "*.wav"): # 实现列表特殊字符的过滤或筛选,返回符合匹配“.wav”字符列表
  self.wav_list.append(os.path.join(root, filename))

 def __getitem__(self, item):
 # 读取一个音频文件,返回每个音频数据
 filename = self.wav_list[item]
 print(filename)
 wb_wav, _ = librosa.load(filename, sr=self.sr)

 # 取 帧
 if len(wb_wav) >= self.dim:
  max_audio_start = len(wb_wav) - self.dim
  audio_start = np.random.randint(0, max_audio_start)
  wb_wav = wb_wav[audio_start: audio_start + self.dim]
 else:
  wb_wav = np.pad(wb_wav, (0, self.dim - len(wb_wav)), "constant")

 return wb_wav, filename

 def __len__(self):
 # 音频文件的总数
 return len(self.wav_list)


train_set = Aduio_DataLoader("./p225", sr=16000)
train_loader = DataLoader(train_set, batch_size=8, shuffle=True)


for (i, data) in enumerate(train_loader):
 wav_data, wav_name = data
 print(wav_data.shape) # torch.Size([8, 8192])
 print(i, wav_name)
 # ('./p225\\p225_293.wav', './p225\\p225_156.wav', './p225\\p225_277.wav', './p225\\p225_210.wav',
 # './p225\\p225_126.wav', './p225\\p225_021.wav', './p225\\p225_257.wav', './p225\\p225_192.wav')

注意事项:

  1. 27-33行:每个音频的长度不一样,如果直接读取数据返回出来的话,会造成维度不匹配而报错,因此只能每次取一个音频文件读取一帧,这样显然并没有用到所有的语音数据,
  2. 48行:我们在__getitem__中并没有将numpy数组转换为tensor格式,可是第48行显示数据是tensor格式的。这里需要引起注意

栗子2

  相比于案例1,案例二才是重点,因为我们不可能每次只从一音频文件中读取一帧,然后读取另一个音频文件,通常情况下,一段音频有很多帧,我们需要的是按顺序的读取一个batch_size的音频帧,先读取第一个音频文件,如果满足一个batch,则不用读取第二个batch,如果不足一个batch则读取第二个音频文件,来补充。

  我给出一个建议,先按顺序读取每个音频文件,以窗长8192、帧移4096对语音进行分帧,然后拼接。得到(帧数,帧长,1)(frame_num, frame_len, 1)的数组保存到h5中。然后用上面讲到的 torch.utils.data.Dataset 和 torch.utils.data.DataLoader 读取数据。

具体实现代码:

  第一步:创建一个H5_generation脚本用来将数据转换为h5格式文件:

  第二步:通过Dataset从h5格式文件中读取数据

import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import h5py

def load_h5(h5_path):
 # load training data
 with h5py.File(h5_path, 'r') as hf:
 print('List of arrays in input file:', hf.keys())
 X = np.array(hf.get('data'), dtype=np.float32)
 Y = np.array(hf.get('label'), dtype=np.float32)
 return X, Y


class AudioDataset(Dataset):
 """数据加载器"""
 def __init__(self, data_folder):
 self.data_folder = data_folder
 self.X, self.Y = load_h5(data_folder) # (3392, 8192, 1)

 def __getitem__(self, item):
 # 返回一个音频数据
 X = self.X[item]
 Y = self.Y[item]

 return X, Y

 def __len__(self):
 return len(self.X)


train_set = AudioDataset("./speaker225_resample_train.h5")
train_loader = DataLoader(train_set, batch_size=64, shuffle=True, drop_last=True)


for (i, wav_data) in enumerate(train_loader):
 X, Y = wav_data
 print(i, X.shape)
 # 0 torch.Size([64, 8192, 1])
 # 1 torch.Size([64, 8192, 1])
 # ...

我尝试在__init__中生成h5文件,但是会导致内存爆炸,就很奇怪,因此我只好分开了,

参考

pytorch学习(四)—自定义数据集(讲的比较详细)

总结

到此这篇关于pytorch加载语音类自定义数据集的文章就介绍到这了,更多相关pytorch加载语音类自定义数据集内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文