python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python中Pyyaml模块

详解Python中Pyyaml模块的使用

作者:蜀山客e

这篇文章主要介绍了Python中Pyyaml模块的使用,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

一、YAML是什么

YAML是专门用来写配置文件的语言,远比JSON格式方便。

YAML语言的设计目标,就是方便人类读写。

YAML是一种比XML和JSON更轻的文件格式,也更简单更强大,它可以通过缩进来表示结构,是不是听起来就和Python很搭?

顾名思义,用语言编写的文件就可以称之为YAML文件。PyYaml是Python的一个专门针对YAML文件操作的模块,使用起来非常简单

安装 pip install pyyaml  # 如果是py2,使用 pip install yaml

二、PyYaml的简单使用

使用起来非常简单,就像json、pickle一样,load、dump就足够我们使用了。

load()示例:返回一个对象

import yaml

yaml_str = """
name: 一条大河
age: 1956
job: Singer
"""

y = yaml.load(yaml_str, Loader=yaml.SafeLoader)
print(y)

运行结果:

{'name': '一条大河', 'age': 1956, 'job': 'Singer'}

load_all()示例:生成一个迭代器

如果string或文件包含几块yaml文档,可以使用yaml.load_all来解析全部的文档。

yaml_test.yaml文件内容:

---
name: qiyu
age: 20岁
---
name: qingqing
age: 19岁

操作yaml文件的test.py文件如下:

import yaml

with open("./yaml_test", 'r', encoding='utf-8') as ymlfile:
  cfg = yaml.load_all(ymlfile, Loader=yaml.SafeLoader)
  for data in cfg:
    print(data)

运行结果:

{'name': 'qiyu', 'age': '20岁'}
{'name': 'qingqing', 'age': '19岁'}

dump()示例:将一个python对象生成为yaml文档

import yaml

json_data = {'name': '一条大河',
       'age': 1956,
       'job': ['Singer','Dancer']}

y = yaml.dump(json_data, default_flow_style=False).encode('utf-8').decode('unicode_escape')
print(y)

运行结果:

age: 1956
job:
- Singer
- Dancer
name: "一条大河"

使用dump()传入参数,可以直接把内容写入到yaml文件:

import yaml

json_data = {'name': '一条大河',
       'age': 1956,
       'job': ['Singer', 'Dancer']}
with open('./yaml_write.yaml', 'w') as f:
  y = yaml.dump(json_data, f)
  print(y)

写入内容后的yaml_write.yaml:

在这里插入图片描述

yaml.dump_all()示例:将多个段输出到一个文件中

import yaml

obj1 = {"name": "river", "age": 2019}
obj2 = ["Lily", 1956]
obj3 = {"gang": "ben", "age": 1963}
obj4 = ["Zhuqiyu", 1994]

with open('./yaml_write_all.yaml', 'w', encoding='utf-8') as f:
  y = yaml.dump([obj1, obj2, obj3, obj4], f)
  print(y)

with open('./yaml_write_all.yaml', 'r') as r:
  y1 = yaml.load(r, Loader=yaml.SafeLoader)
  print(y1)

写入内容后的yaml_write_all.yaml:

在这里插入图片描述

为什么写入文件后的格式有的带1个“-”,有的带2个“-”?

为什么yaml文件读出来的的格式是List?

三、YAML的语法规则和数据结构

看完了以上4个简单的示例,现在就来总结下YAML语言的基本语法

YAML 基本语法规则如下:

1、大小写敏感

2、使用缩进表示层级关系

3、缩进时不允许使用Tab键,只允许使用空格。

4、缩进的空格数目不重要,只要相同层级的元素左侧对齐即可

5、# 表示注释,从这个字符一直到行尾,都会被解析器忽略,这个和python的注释一样

6、列表里的项用"-"来代表,字典里的键值对用":"分隔

知道了语法规则,现在来回答下上面的2个问题:

1、带1个“-”表示不同的模块(单个数组或者字典),带2个“-”是因为数组中元素以“-”开始,加上表示不同模块的那一个“-”,呈现出来就是2个“-”

2、因为yaml文件中包含多个模块(多个数组或者字典),读取出来的是这些模块的一个集合

3、有且只有当yaml文件中只有1个字典时,读取出来的数据的类型也是字典

YAML 支持的数据结构有3种:

1、对象:键值对的集合

2、数组:一组按次序排列的值,序列(sequence) 或 列表(list)

3、纯量(scalars):单个的、不可再分的值,如:字符串、布尔值、整数、浮点数、Null、时间、日期

支持数据示例:

yaml_test_data.yaml的内容:

str: "Big River"              #字符串
int: 1548                 #整数
float: 3.14                #浮点数
boolean: true               #布尔值
None: null                # 也可以用 ~ 号来表示 null
time: '2019-11-20T08:47:46.576701+00:00'    # 时间,ISO8601 
date: 2019-11-20 16:47:46.576702        # 日期

操作代码:

import yaml
import datetime
import pytz

yaml_data = {
  "str": "Big River",
  "int": 1548,
  "float": 3.14,
  'boolean': True,
  "None": None,
  'time': datetime.datetime.now(tz=pytz.timezone('UTC')).isoformat(),
  'date': datetime.datetime.today()
}

with open('./yaml_test', 'w') as f:
  y = yaml.dump(yaml_data, f)
  print(y)

with open('./yaml_test', 'r') as r:
  y1 = yaml.load(r, Loader=yaml.SafeLoader)
  print(y1)

控制台输出:

在这里插入图片描述

其他语法规则

1、如果字符串没有空格或特殊字符,不需要加引号,但如果其中有空格或特殊字符,就需要加引号了

在这里插入图片描述

2、引用

& 和 * 用于引用

name: &name SKP
tester: *name

运行结果:

{'name': 'SKP', 'tester': 'SKP'}

3、强制转换

用 !! 实现

str: !!str 3.14
int: !!int "123"

运行结果:

{'int': 123, 'str': '3.14'}

4、分段

在同一个yaml文件中,可以用“—”3个“-”来分段,这样可以将多个文档写在一个文件中

举例见上述load_all()示例

四、python对象生成yaml文档

1、yaml.dump()方法

import yaml
import os

def generate_yaml_doc(yaml_file):
  py_object = {'school': 'zhu',
         'students': ['a', 'b']}
  file = open(yaml_file, 'w', encoding='utf-8')
  yaml.dump(py_object, file)
  file.close()

current_path = os.path.abspath(".")
yaml_path = os.path.join(current_path, "generate.yaml")
generate_yaml_doc(yaml_path)
"""结果
school: zhu
students:
- a
- b
"""

2、使用ruamel模块中的yaml方法生成标准的yaml文档

import os
from ruamel import yaml   # pip3 install ruamel.yaml

def generate_yaml_doc_ruamel(yaml_file):
  py_object = {'school': 'zhu',
         'students': ['a', 'b']}
  file = open(yaml_file, 'w', encoding='utf-8')
  yaml.dump(py_object, file, Dumper=yaml.RoundTripDumper)
  file.close()

current_path = os.path.abspath(".")
yaml_path = os.path.join(current_path, "generate.yaml")
generate_yaml_doc_ruamel(yaml_path)
"""结果
school: zhu
students:
- a
- b
"""

使用ruamel模块中的yaml方法读取yaml文档(用法与单独import yaml模块一致)

import os
from ruamel import yaml

def get_yaml_data_ruamel(yaml_file):
  file = open(yaml_file, 'r', encoding='utf-8')
  data = yaml.load(file, Loader=yaml.Loader)
  file.close()
  print(data)

current_path = os.path.abspath(".")
yaml_path = os.path.join(current_path, "generate.yaml")
get_yaml_data_ruamel(yaml_path)

到此这篇关于Python中Pyyaml模块的使用的文章就介绍到这了,更多相关Python中Pyyaml模块内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文