python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python 语义图片分割

python 使用递归的方式实现语义图片分割功能

作者:繁华落尽、时光静好

这篇文章主要介绍了python 使用递归的方式实现语义图片分割,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

实现效果

在这里插入图片描述

第一张图为原图,其余的图为分割后的图形

代码实现:

# -*-coding:utf-8-*-
import numpy as np
import cv2

#----------------------------------------------------------------------
def obj_clip(img, foreground, border):
  result = []
  height ,width = np.shape(img)
  visited = set()
  for h in range(height):
    for w in range(width):
      if img[h,w] == foreground and not (h,w) in visited:
        obj = visit(img, height, width, h, w, visited, foreground, border)
        result.append(obj)
  return result
#----------------------------------------------------------------------
def visit(img, height, width, h, w, visited, foreground, border):
  visited.add((h,w))
  result = [(h,w)]
  if w > 0 and not (h, w-1) in visited:
    if img[h, w-1] == foreground: 
      result += visit(img, height, width, h, w-1, visited , foreground, border)
    elif border is not None and img[h, w-1] == border:
      result.append((h, w-1))
  if w < width-1 and not (h, w+1) in visited:
    if img[h, w+1] == foreground:
      result += visit(img, height, width, h, w+1, visited, foreground, border)
    elif border is not None and img[h, w+1] == border:
      result.append((h, w+1))
  if h > 0 and not (h-1, w) in visited:
    if img[h-1, w] == foreground:
      result += visit(img, height, width, h-1, w, visited, foreground, border)
    elif border is not None and img[h-1, w] == border:
      result.append((h-1, w))
  if h < height-1 and not (h+1, w) in visited:
    if img[h+1, w] == foreground :
      result += visit(img, height, width, h+1, w, visited, foreground, border) 
    elif border is not None and img[h+1, w] == border:
      result.append((h+1, w))
  return result
#----------------------------------------------------------------------
if __name__ == "__main__":
  import cv2
  import sys
  sys.setrecursionlimit(100000)
  img = np.zeros([400,400])
  cv2.rectangle(img, (10,10), (150,150), 1.0, 5)
  cv2.circle(img, (270,270), 70, 1.0, 5)
  cv2.line(img, (100,10), (100,150), 0.5, 5)
  #cv2.putText(img, "Martin",(200,200), 1.0, 5)
  cv2.imshow("img", img*255)
  cv2.waitKey(0)
  for obj in obj_clip(img, 1.0, 0.5):
    clip = np.zeros([400, 400])
    for h, w in obj:
      clip[h, w] = 0.2
    cv2.imshow("aa", clip*255)
    cv2.waitKey(0)

总结

到此这篇关于python 使用递归的方式实现语义图片分割的文章就介绍到这了,更多相关python 语义图片分割内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文