Mysql

关注公众号 jb51net

关闭
首页 > 数据库 > Mysql > MySQL索引查询优化技巧

一篇文章掌握MySQL的索引查询优化技巧

作者:PHP进阶架构师

这篇文章主要给大家介绍了关于如何通过一篇文章掌握MySQL的索引查询优化技巧,文中通过示例代码介绍的非常详细,对大家的学习或者使用MySQL具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧

前言

本文的内容是总结一些MySQL的常见使用技巧,以供没有DBA的团队参考。如无特殊说明,存储引擎以InnoDB为准。

MySQL的特点

了解MySQL的特点有助于更好的使用MySQL,MySQL和其它常见数据库最大的不同在于存在存储引擎这个概念,存储引擎负责存储和读取数据。不同的存储引擎具有不同的特点,用户可以根据业务的特点选择适合的存储引擎,甚至是开发一个新的引擎。MySQL的逻辑架构大致如下:

MySQL默认的存储引擎是InnoDB,该存储引擎的主要特点是:

其它常见存储引擎特点概述:

还有很多,不再一一列举。

数据类型优化

选择数据类型的原则:

占用空间小的类型更节省硬件资源,如磁盘、内存和CPU。尽量使用简单的类型,如能用 int 就不用 char ,因为后者的排序涉及到字符集的选择,比使用 int 复杂。可空列使用更多的存储空间,如果在可空列上创建索引,MySQL需要额外的字节做记录。创建表时,默认都是可空,容易被开发者忽视,最好是手动改为不可空,如果要存储的数据确实不会有空值的话。

整型类型

整型类型包括 :

它们分别使用8、16、24、32和64位存储数字,它们可以表示

范围的数字,前面可以加unsigned修饰,这样可以让正数的可表示范围提高1倍,但是无法表示负数。另外,为整型指定长度没什么卵用,数据类型定下来,长度也就相应定下来了。

小数类型

float 和 double 就是通常意义上的 float 和 double ,前者使用32位存储数据,后者使用64位存储数据,和整型一样,为它们指定长度没什么卵用。

decimal 类型比较复杂,支持精确计算,占用的空间也大, decimal 使用每4个字节表示9个数字,如 decimal(18,9) 表示数字长度是18,其中小数位9个数字,整数部分9个数字,加上小数点本身,共占用9个字节。考虑到 decimal 占用空间较多,以及精度计算很复杂,数据量大的时候可以考虑用 bigint 代替之,可以在持久化和读取前对真实数据进行一些缩放操作。

字符串类型

varchar类型数据实际占用空间等于字符串的长度加上1个或2个用来记录字符串长度的字节(当row-format没有被设置为fixed时),varchar很节省空间。当表中某列字符串类型的数据长度差别较大时适合使用varchar。

char的实际占用空间是固定的,当表中字符串数据的长度相差无几或很短时适合使用chart类型。

与varchar和char对应的有varbinary和binary,后者存储的是二进制字符串,和前者相比,后者大小写敏感,不用考虑编码方式,执行比较操作时更快。

需要注意的是:虽然varchar(5)和varchar(200)在存储“hello”这个字符串时使用相同的存储空间,但并不意味着将varchar的长度设置太大不会影响性能,实际上,MySQL的某些内部计算,比如创建内存临时表时(某些查询会导致MySQL自动创建临时表),会分配固定大小的空间存放数据。

blob使用二进制字符串保存大文本,text使用字符保存大文本,InnoDB会使用专门的外部存储区来存放此类数据,数据行内仅存放指向他们的指针,此类数据不宜创建索引(要创建也只能正对字符串前缀创建),不过也不会有人这么干。

如果某列字符串大量重复且内容有限,可使用枚举代替,MySQL处理枚举时维护了一个“数字-字符串”表,使用枚举可以减少很多存储空间。

时间类型

datetime存储范围是1001到9999,精确到秒。timestamp存储1970年1月1日午夜以来的秒数,可以表示到2038年。占用4个字节,是datetime占用空间的一半。timestamp表示的时间和时区有关,另外timestamp列还有个特性,执行insert或update语句时,MySQL会自动更新第一个类型为timestamp的列的数据为当前时间。很多表中都有设计有一列叫做UpdateTime,这个列使用timestamp倒是挺合适的,会自动更新,前提是系统不会使用到2038年。

主键类型的选择

尽可能使用整型,整型占用空间少,还可以设置为自动增长。尤其别使用GUID,MD5等哈希值字符串作为主键,这类字符串随机性很大,由于InnoDB主键默认是聚簇索引列,所以导致数据存储太分散。另外,InnoDB的二级索引列中默认包含主键列,如果主键太长,也会使得二级索引很占空间。

特殊类型的数据

存储IP最好使用32位无符号整型,MySQL提供了函数inet_aton()和inet_ntoa()进行IP地址的数字表示和字符串表示之间的转换。

索引优化

InnoDB使用B+树实现索引,举个例子,假设有个People,建表语句如下

CREATE TABLE `people` (
 `Id` int(11) NOT NULL AUTO_INCREMENT,
 `Name` varchar(5) NOT NULL,
 `Age` tinyint(4) NOT NULL,
 `Number` char(5) NOT NULL COMMENT '编号',
 PRIMARY KEY (`Id`),
 KEY `i_name_age_number` (`Name`,`Age`,`Number`)
) ENGINE=InnoDB AUTO_INCREMENT=14 DEFAULT CHARSET=utf8;

插入数据:

它的索引结构大致是这样的:

也就是说,索引列的顺序很重要,如果两行数据的Name列相同,则用Age列比较大小,如果Age列相同,则用Number列比较大小。先用第一列排序,然后是第二列,最后是第三列。

查询的使用应该尽量从左往右匹配,另外,如果左边列范围查找,右边列无法使用索引;还有就是不能隔列查询,否则后面的索引也无法使用到。如以下几个SQL是正面范例:

以下几个SQL是反面范例:

一个使用Hash值创建索引的技巧

如果表中有一列存储较长字符串,假设名字为URL,在此列上创建的索引比较大,有个办法可以缓解:创建URL字符串的数字哈希值的索引。再新建一个字段,比如叫做URL_CRC,专门放置URL的哈希值,然后给这个字段创建索引,查询时这样写:

select * from t where URL_CRC = 387695885 and URL = 'www.baidu.com'

如果数据量比较多,为防止哈希冲突,可自定义哈希函数,或用MD5函数返回值的一部分作为哈希值:

SELECT CONV(RIGHT(MD5('www.baidu.com'),16), 16, 10)

前缀索引

如果字符串列存储的数据较长,创建的索引也很大,这时可以使用前缀索引,即:只针对字符串前几个字符做索引,这样可以缩短索引的大小,不过,显然,此类索引在执行 order by 和 group by 时不起作用。

创建前缀索引时选择前缀长度很重要,在不破坏原来数据分布的情况下尽可能选择较短的前缀。举个例子,如果如果大部分字符串是以”abc”开头,那么如果限定前缀索引长度为4,索引值会包含太多的重复的”abcX”。

多列索引

上面提到的“People”上创建的索引即为多列索引,多列索引往往比多个单列索引更好。

select * from t where f1 = 'v1' and f2 <> 'v2' union all select * from t where f2 = 'v2' and f1 <> 'v1'

多列索引的顺序很重要,通常,不考虑排序和分组查询时,应该把选择性(选择性是指某表索引列不同数据的个数/总行数。选择性高意味着重复数据少)大的列放到前面。但也有例外,如果能确认某些查询是频繁执行的,则应该优先照顾这些查询的选择性,比如,如果上面的People表中Name的选择性大于Age,查询语句应该这样写:

select * from people where name = 'xxx' and age = xx

Name列放了索引中的左侧比较合适,但是如果某个SQL执行的评率最高,比如

select * from people where name = 'xxx' and age = 20

当age=20的记录在数据库中非常少时,反而把age放到索引列的左端效率更高。把age放了索引左端可能对其它age不等于20的查询来说不公平,如果不能确定age=20是最非常频繁的查询条件,还是要综合考虑,把name放了左侧合适。

聚簇索引

聚簇索引是一种数据存储结构,InnoDB在主键的索引的叶子节点中直接保存了数据行,而不是像二级索引那样只是保存了索引列的值和所指向行的主键值。由于这个特性,一个表只能有一个聚簇索引。如果一个表没有定义主键也没有定义具有唯一索引的列,那么InnoDB会生成一个隐藏列,并且在此列设为聚簇索引列。

覆盖索引

简单地说,某些查询只需要查询索引列,那么就不用再根据索引B树节点记录的主键ID进行二次查询了。

重复索引和冗余索引

如果重复在某列创建索引,并不会带来任何好处,只有坏处,应该尽量避免。比如给主键创建唯一索引和普通索引就是多于的,因为InnoDB的主键默认就是聚簇索引了。

冗余索引和重复索引不同,比如某个索引是(A,B),另一个索引是(A),这叫冗余索引,前者可以代替后者,后者不可以代替前者的作用。但是(A,B)和(B)以及(A,B)和(B,A)不算冗余索引,起作用谁也代替不了谁。

如果一个表中已经存在索引(A),现在又想创建索引(A,B),那么只需扩展就的索引就可以,没有必要创建新的索引。需要注意的是如果已经存在索引(A),那么也没有必要在创建索引(A,ID),其中ID指主键,因为索引A默认已经包含了主键了,也算是冗余主键。

但是,有时候,冗余索引也是可取的,假设已经存在索引(A),将其扩展为(A,B)后,因为B列是一个很长的类型,导致用A单独查询时没有以前快了,这时可以考虑新创建索引(A,B)。

不使用的索引

不使用的索引徒然增加insert、update和delete的效率,应该及时删除

索引使用总结

索引的三星原则:

第一个条原则的意思是where条件中查询的顺序和索引是一致的,就是前面说的从左到右使用索引。

索引不是万能的,当数据量巨大时,维护索引本身也是耗费性能的,应该考虑分区分表存储。

查询优化

查询慢的原因

是否向数据库请求了多余的行

比如应用程序只需要10条数据,但是却向数据库请求了所有的数据,在显示在UI上之前抛弃了大部分数据。

是否向数据库请求了多余的列

比如应用程序只需要展现5列,但却通过select * from 把全部的列都查了出来

是否重复多次执行了相同的查询

应用程序是否可以考虑一次查询然后缓存,后面的用到时可以使用第一次查询出来的记录。

MySQL是否在扫描额外的记录

通过查看执行计划可以大概了解需要扫描的记录数,如果这个数字超出了预期,尽可能通过添加索引、优化SQL(就是本节的重点),或者改变表结构(如新增一个单独的汇总表,专门供某个语句查询用)来解决。

重构查询的方式

杂七杂八

优化count()

Count有两个作用,一是统计指定的列或表达式,二是统计行数。如果参数传入一列名或者是一个表达式,那么count会统计所有结果不为NULL的行数,如果参数是*,那么count会统计所有行数。这里有一个传表达式的例子:

SELECT count(name like 'B%') from people

关联查询的优化

优化子查询

对于MySQL5.5及以下版本,尽量用连接代替子查询。

优化group by、distinct

如果可能,尽量对主键施加这两种操作。

优化limit,比如有SQL

SELECT * from sa_stockinfo ORDER BY StockAcc LIMIT 400, 5

MySQL优化器会查找405行所有列数据然后丢弃400。如果能利用覆盖索引查询则不必查询出这么多列,先修改为:

SELECT * FROM sa_stockinfo i JOIN (SELECT StockInfoID FROM sa_stockinfo ORDER BY StockAcc LIMIT 400,5)t ON i.StockInfoID = t.StockInfoID

StockAcc上建有索引,该查询会利用索引覆盖,较快找出符合条件的主键,然后在做联合查询,在数据量大的时候效果明显。

优化union

如无必要,一定要用关键字 union all,这样MySQL把数据放到临时表时不会再做唯一性验证

判断某条记录是否存在,通常的做法是

select count(*) from t where condition

最好这样写:

SELECT IFNULL((SELECT 1 from tableName where condition LIMIT 1),0)

总结

到此这篇关于MySQL索引查询优化技巧的文章就介绍到这了,更多相关MySQL索引查询优化技巧内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文