Python3 ID3决策树判断申请贷款是否成功的实现代码
作者:qiuqiu1027
这篇文章主要介绍了Python3 ID3决策树判断申请贷款是否成功的实现代码,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
1. 定义生成树
# -*- coding: utf-8 -*- #生成树的函数 from numpy import * import numpy as np import pandas as pd from math import log import operator # 计算数据集的信息熵(Information Gain)增益函数(机器学习实战中信息熵叫香农熵) def calcInfoEnt(dataSet):#本题中Label即好or坏瓜 #dataSet每一列是一个属性(列末是Label) numEntries = len(dataSet) #每一行是一个样本 labelCounts = {} #给所有可能的分类创建字典labelCounts for featVec in dataSet: #按行循环:即rowVev取遍了数据集中的每一行 currentLabel = featVec[-1] #故featVec[-1]取遍每行最后一个值即Label if currentLabel not in labelCounts.keys(): #如果当前的Label在字典中还没有 labelCounts[currentLabel] = 0 #则先赋值0来创建这个词 labelCounts[currentLabel] += 1 #计数, 统计每类Label数量(这行不受if限制) InfoEnt = 0.0 for key in labelCounts: #遍历每类Label prob = float(labelCounts[key])/numEntries #各类Label熵累加 InfoEnt -= prob * log(prob,2) #ID3用的信息熵增益公式 return InfoEnt ### 对于离散特征: 取出该特征取值为value的所有样本 def splitDiscreteDataSet(dataSet, axis, value): #dataSet是当前结点(待划分)集合,axis指示划分所依据的属性,value该属性用于划分的取值 retDataSet = [] #为return Data Set分配一个列表用来储存 for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] #该特征之前的特征仍保留在样本dataSet中 reducedFeatVec.extend(featVec[axis+1:]) #该特征之后的特征仍保留在样本dataSet中 retDataSet.append(reducedFeatVec) #把这个样本加到list中 return retDataSet ### 对于连续特征: 返回特征取值大于value的所有样本(以value为阈值将集合分成两部分) def splitContinuousDataSet(dataSet, axis, value): retDataSetG = [] #将储存取值大于value的样本 retDataSetL = [] #将储存取值小于value的样本 for featVec in dataSet: if featVec[axis] > value: reducedFeatVecG = featVec[:axis] reducedFeatVecG.extend(featVec[axis+1:]) retDataSetG.append(reducedFeatVecG) else: reducedFeatVecL = featVec[:axis] reducedFeatVecL.extend(featVec[axis+1:]) retDataSetL.append(reducedFeatVecL) return retDataSetG,retDataSetL #返回两个集合, 是含2个元素的tuple形式 ### 根据InfoGain选择当前最好的划分特征(以及对于连续变量还要选择以什么值划分) def chooseBestFeatureToSplit(dataSet,labels): numFeatures = len(dataSet[0])-1 baseEntropy = calcInfoEnt(dataSet) bestInfoGain = 0.0; bestFeature = -1 bestSplitDict = {} for i in range(numFeatures): #遍历所有特征:下面这句是取每一行的第i个, 即得当前集合所有样本第i个feature的值 featList = [example[i] for example in dataSet] #判断是否为离散特征 if not (type(featList[0]).__name__=='float' or type(featList[0]).__name__=='int'): # 对于离散特征:求若以该特征划分的熵增 uniqueVals = set(featList) #从列表中创建集合set(得列表唯一元素值) newEntropy = 0.0 for value in uniqueVals: #遍历该离散特征每个取值 subDataSet = splitDiscreteDataSet(dataSet, i, value)#计算每个取值的信息熵 prob = len(subDataSet)/float(len(dataSet)) newEntropy += prob * calcInfoEnt(subDataSet)#各取值的熵累加 infoGain = baseEntropy - newEntropy #得到以该特征划分的熵增 # 对于连续特征:求若以该特征划分的熵增(区别:n个数据则需添n-1个候选划分点, 并选最佳划分点) else: #产生n-1个候选划分点 sortfeatList=sorted(featList) splitList=[] for j in range(len(sortfeatList)-1): #产生n-1个候选划分点 splitList.append((sortfeatList[j] + sortfeatList[j+1])/2.0) bestSplitEntropy = 10000 #设定一个很大的熵值(之后用) #遍历n-1个候选划分点: 求选第j个候选划分点划分时的熵增, 并选出最佳划分点 for j in range(len(splitList)): value = splitList[j] newEntropy = 0.0 DataSet = splitContinuousDataSet(dataSet, i, value) subDataSetG = DataSet[0] subDataSetL = DataSet[1] probG = len(subDataSetG) / float(len(dataSet)) newEntropy += probG * calcInfoEnt(subDataSetG) probL = len(subDataSetL) / float(len(dataSet)) newEntropy += probL * calcInfoEnt(subDataSetL) if newEntropy < bestSplitEntropy: bestSplitEntropy = newEntropy bestSplit = j bestSplitDict[labels[i]] = splitList[bestSplit]#字典记录当前连续属性的最佳划分点 infoGain = baseEntropy - bestSplitEntropy #计算以该节点划分的熵增 # 在所有属性(包括连续和离散)中选择可以获得最大熵增的属性 if infoGain > bestInfoGain: bestInfoGain = infoGain bestFeature = i #若当前节点的最佳划分特征为连续特征,则需根据“是否小于等于其最佳划分点”进行二值化处理 #即将该特征改为“是否小于等于bestSplitValue”, 例如将“密度”变为“密度<=0.3815” #注意:以下这段直接操作了原dataSet数据, 之前的那些float型的值相应变为0和1 #【为何这样做?】在函数createTree()末尾将看到解释 if type(dataSet[0][bestFeature]).__name__=='float' or type(dataSet[0][bestFeature]).__name__=='int': bestSplitValue = bestSplitDict[labels[bestFeature]] labels[bestFeature] = labels[bestFeature] + '<=' + str(bestSplitValue) for i in range(shape(dataSet)[0]): if dataSet[i][bestFeature] <= bestSplitValue: dataSet[i][bestFeature] = 1 else: dataSet[i][bestFeature] = 0 return bestFeature # 若特征已经划分完,节点下的样本还没有统一取值,则需要进行投票:计算每类Label个数, 取max者 def majorityCnt(classList): classCount = {} #将创建键值为Label类型的字典 for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 #第一次出现的Label加入字典 classCount[vote] += 1 #计数 return max(classCount)
2. 递归产生决策树
# 主程序:递归产生决策树 # dataSet:当前用于构建树的数据集, 最开始就是data_full,然后随着划分的进行越来越小。这是因为进行到到树分叉点上了. 第一次划分之前17个瓜的数据在根节点,然后选择第一个bestFeat是纹理. 纹理的取值有清晰、模糊、稍糊三种;将瓜分成了清晰(9个),稍糊(5个),模糊(3个),这时应该将划分的类别减少1以便于下次划分。 # labels:当前数据集中有的用于划分的类别(这是因为有些Label当前数据集没了, 比如假如到某个点上西瓜都是浅白没有深绿了) # data_full:全部的数据 # label_full:全部的类别 numLine = numColumn = 2 #这句是因为之后要用global numLine……至于为什么我一定要用global # 我也不完全理解。如果我只定义local变量总报错,我只好在那里的if里用global变量了。求解。 def createTree(dataSet,labels,data_full,labels_full): classList = [example[-1] for example in dataSet] #递归停止条件1:当前节点所有样本属于同一类;(注:count()方法统计某元素在列表中出现的次数) if classList.count(classList[0]) == len(classList): return classList[0] #递归停止条件2:当前节点上样本集合为空集(即特征的某个取值上已经没有样本了): global numLine,numColumn (numLine,numColumn) = shape(dataSet) if float(numLine) == 0: return 'empty' #递归停止条件3:所有可用于划分的特征均使用过了,则调用majorityCnt()投票定Label; if float(numColumn) == 1: return majorityCnt(classList) #不停止时继续划分: bestFeat = chooseBestFeatureToSplit(dataSet,labels)#调用函数找出当前最佳划分特征是第几个 bestFeatLabel = labels[bestFeat] #当前最佳划分特征 myTree = {bestFeatLabel:{}} featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) if type(dataSet[0][bestFeat]).__name__=='str': currentlabel = labels_full.index(labels[bestFeat]) featValuesFull = [example[currentlabel] for example in data_full] uniqueValsFull = set(featValuesFull) del(labels[bestFeat]) #划分完后, 即当前特征已经使用过了, 故将其从“待划分特征集”中删去 #【递归调用】针对当前用于划分的特征(beatFeat)的每个取值,划分出一个子树。 for value in uniqueVals: #遍历该特征【现存的】取值 subLabels = labels[:] if type(dataSet[0][bestFeat]).__name__=='str': uniqueValsFull.remove(value) #划分后删去(从uniqueValsFull中删!) myTree[bestFeatLabel][value] = createTree(splitDiscreteDataSet(dataSet,bestFeat,value),subLabels,data_full,labels_full)#用splitDiscreteDataSet() #是由于, 所有的连续特征在划分后都被我们定义的chooseBestFeatureToSplit()处理成离散取值了。 if type(dataSet[0][bestFeat]).__name__=='str': #若该特征离散【更详见后注】 for value in uniqueValsFull:#则可能有些取值已经不在【现存的】取值中了 #这就是上面为何从“uniqueValsFull”中删去 #因为那些现有数据集中没取到的该特征的值,保留在了其中 myTree[bestFeatLabel][value] = majorityCnt(classList) return myTree
3. 调用生成树
#生成树调用的语句 df = pd.read_excel(r'E:\BaiduNetdiskDownload\spss\数据\实验data\银行贷款.xlsx') data = df.values[:,1:].tolist() data_full = data[:] labels = df.columns.values[1:-1].tolist() labels_full = labels[:] myTree = createTree(data,labels,data_full,labels_full)
查看数据
data
labels
4. 绘制决策树
#绘决策树的函数 import matplotlib.pyplot as plt decisionNode = dict(boxstyle = "sawtooth",fc = "0.8") #定义分支点的样式 leafNode = dict(boxstyle = "round4",fc = "0.8") #定义叶节点的样式 arrow_args = dict(arrowstyle = "<-") #定义箭头标识样式 # 计算树的叶子节点数量 def getNumLeafs(myTree): numLeafs = 0 firstStr = list(myTree.keys())[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': numLeafs += getNumLeafs(secondDict[key]) else: numLeafs += 1 return numLeafs # 计算树的最大深度 def getTreeDepth(myTree): maxDepth = 0 firstStr = list(myTree.keys())[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': thisDepth = 1 + getTreeDepth(secondDict[key]) else: thisDepth = 1 if thisDepth > maxDepth: maxDepth = thisDepth return maxDepth # 画出节点 def plotNode(nodeTxt,centerPt,parentPt,nodeType): createPlot.ax1.annotate(nodeTxt,xy = parentPt,xycoords = 'axes fraction',xytext = centerPt,textcoords = 'axes fraction',va = "center", ha = "center",bbox = nodeType,arrowprops = arrow_args) # 标箭头上的文字 def plotMidText(cntrPt,parentPt,txtString): lens = len(txtString) xMid = (parentPt[0] + cntrPt[0]) / 2.0 - lens*0.002 yMid = (parentPt[1] + cntrPt[1]) / 2.0 createPlot.ax1.text(xMid,yMid,txtString) def plotTree(myTree,parentPt,nodeTxt): numLeafs = getNumLeafs(myTree) depth = getTreeDepth(myTree) firstStr = list(myTree.keys())[0] cntrPt = (plotTree.x0ff + (1.0 + float(numLeafs))/2.0/plotTree.totalW,plotTree.y0ff) plotMidText(cntrPt,parentPt,nodeTxt) plotNode(firstStr,cntrPt,parentPt,decisionNode) secondDict = myTree[firstStr] plotTree.y0ff = plotTree.y0ff - 1.0/plotTree.totalD for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': plotTree(secondDict[key],cntrPt,str(key)) else: plotTree.x0ff = plotTree.x0ff + 1.0/plotTree.totalW plotNode(secondDict[key],(plotTree.x0ff,plotTree.y0ff),cntrPt,leafNode) plotMidText((plotTree.x0ff,plotTree.y0ff),cntrPt,str(key)) plotTree.y0ff = plotTree.y0ff + 1.0/plotTree.totalD def createPlot(inTree): fig = plt.figure(1,facecolor = 'white') fig.clf() axprops = dict(xticks = [],yticks = []) createPlot.ax1 = plt.subplot(111,frameon = False,**axprops) plotTree.totalW = float(getNumLeafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.x0ff = -0.5/plotTree.totalW plotTree.y0ff = 1.0 plotTree(inTree,(0.5,1.0),'') plt.show()
5. 调用函数
#命令绘决策树的图 createPlot(myTree)
myTree
总结
到此这篇关于Python3 ID3决策树判断申请贷款是否成功的实现代码的文章就介绍到这了,更多相关python ID3 决策树判断内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!