python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python sympy常微分方程

python中sympy库求常微分方程的用法

作者:t4ngw

这篇文章主要介绍了python中sympy库求常微分方程的用法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

问题1:

程序,如下

from sympy import *
f = symbols('f', cls=Function)
x = symbols('x')
eq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))
print(dsolve(eq, f(x)))

结果

Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)

附:布置考试中两题

1.利用python的Sympy库求解微分方程的解 y=f(x),并尝试利用matplotlib绘制函数图像

程序,如下

from sympy import *
f = symbols('f', cls=Function)
x = symbols('x')
eq = Eq(f(x).diff(x,1)+f(x)+f(x)**2, 0)
print(dsolve(eq, f(x)))
C1 = symbols('C1')
eqr = -C1/(C1 - exp(x))
eqr1 = eqr.subs(x, 0)
print(solveset(eqr1 - 1, C1))
eqr2 = eqr.subs(C1, 1/2)
# 画图
import matplotlib.pyplot as plt
import numpy as np
x_1 = np.arange(-5, 5, 0.1)
y_1 = [-0.5/(0.5 - exp(x)) for x in x_1]
plt.plot(x_1, y_1)
plt.axis([-6,6,-10,10])
plt.grid()
plt.show()

结果

Eq(f(x), -C1/(C1 - exp(x)))
FiniteSet(1/2)


2.利用python的Sympy库求解微分方程的解 y=y(x),并尝试利用matplotlib绘制函数图像

程序,如下

from sympy import *
y = symbols('y', cls=Function)
x = symbols('x')
eq = Eq(y(x).diff(x,1), y(x))
print(dsolve(eq, y(x)))
C1 = symbols('C1')
eqr = C1*exp(x)
eqr1 = eqr.subs(x, 0)
print(solveset(eqr1 - 1, C1))
eqr2 = eqr.subs(C1, 1)
# 画图
import matplotlib.pyplot as plt
import numpy as np
x_1 = np.arange(-5, 5, 0.01)
y_1 = [exp(x) for x in x_1]
plt.plot(x_1, y_1, color='orange')
plt.grid()
plt.show()

结果

Eq(y(x), C1*exp(x))
FiniteSet(1)

到此这篇关于python中sympy库求常微分方程的用法的文章就介绍到这了,更多相关python sympy常微分方程内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文