java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java二叉搜索树遍历

Java二叉搜索树遍历操作详解【前序、中序、后序、层次、广度优先遍历】

作者:WFaceBoss

这篇文章主要介绍了Java二叉搜索树遍历操作,结合实例形式详细分析了Java二叉搜索树前序、中序、后序、层次、广度优先遍历等相关原理与操作技巧,需要的朋友可以参考下

本文实例讲述了Java二叉搜索树遍历操作。分享给大家供大家参考,具体如下:

前言:在上一节Java二叉搜索树基础中,我们对树及其相关知识做了了解,对二叉搜索树做了基本的实现,下面我们继续完善我们的二叉搜索树。

对于二叉树,有深度遍历和广度遍历,深度遍历有前序、中序以及后序三种遍历方法,广度遍历即我们寻常所说的层次遍历,如图:

因为树的定义本身就是递归定义,所以对于前序、中序以及后序这三种遍历我们使用递归的方法实现,而对于广度优先遍历需要选择其他数据结构实现,本例中我们使用队列来实现广度优先遍历。

四种基本的遍历思想为:

前序遍历:根结点 ---> 左子树 ---> 右子树
中序遍历:左子树---> 根结点 ---> 右子树
后序遍历:左子树 ---> 右子树 ---> 根结点
层次遍历:从上到下,从左到右。

比如,以下二叉树的各种遍历:

前序遍历:5-3-2-4-6-8
中序遍历:2-3-4-5-6-8
后序遍历:2-4-3-8-6-5
层次遍历:5-3-6-2-4-8

一、前序遍历

依据上文提到的遍历思路:根结点 ---> 左子树 ---> 右子树,代码实现如下:

 //二分搜索树的前序遍历(前序遍历:根结点 ---> 左子树 ---> 右子树)
  public void preOrder() {
    preOrder(root);
  }

  //前序遍历以node为根的二分搜索树,递归算法
  private void preOrder(Node node) {
    if (node == null) {
      return;
    }
    System.out.println(node.e);
    preOrder(node.left);
    preOrder(node.right);
  }

二、中序遍历

依据上文提到的遍历思路:左子树 ---> 根结点 ---> 右子树,代码实现如下:

  //二分搜索树的中序遍历(中序遍历:左子树---> 根结点 ---> 右子树)
  public void inOrder() {
    inOrder(root);
  }

  //中序遍历以node为根的二分搜索树,递归算法
  private void inOrder(Node node) {
    if (node == null) {
      return;
    }
    inOrder(node.left);
    System.out.println(node.e);
    inOrder(node.right);
  }

三、后序遍历

依据上文提到的遍历思路:左子树 ---> 右子树 ---> 根结点,代码实现如下:

  //二分搜索树的后序遍历(后序遍历:左子树 ---> 右子树 ---> 根结点)
  public void postOrder() {
    postOrder(root);
  }

  //后序遍历以node为根的二分搜索树,递归算法
  private void postOrder(Node node) {
    if (node == null) {
      return;
    }
    postOrder(node.left);
    postOrder(node.right);
    System.out.println(node.e);
  }

四、层次遍历

对于层次遍历,我们基于队列来实现,思路如下:
(1)先在队列中增加根结点
(2)对于随意其余任意节点,在其出队列的时候访问(假设左孩子和右孩子有不为空的情况,入队列)
代码实现如下:

//层次遍历--(基于队列实现)
  public void levelOrder() {

    Queue<Node> q = new LinkedList<>();
    q.add(root);

    while (!q.isEmpty()) {
      Node cur = q.remove();
      System.out.println(cur.e);
      if (cur.left != null) {
        q.add(cur.left);
      }
      if (cur.right!=null){
        q.add(cur.right);
      }
    }
  }

源代码地址 https://github.com/FelixBin/dataStructure/blob/master/src/BST/BST.java

更多关于java算法相关内容感兴趣的读者可查看本站专题:《Java数据结构与算法教程》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》和《Java缓存操作技巧汇总

希望本文所述对大家java程序设计有所帮助。

您可能感兴趣的文章:
阅读全文