详解Python Opencv和PIL读取图像文件的差别
作者:Oldpan博客
这篇文章主要介绍了详解Python Opencv和PIL读取图像文件的差别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
前言
之前在进行深度学习训练的时候,偶然发现使用PIL读取图片训练的效果要比使用python-opencv读取出来训练的效果稍好一些,也就是训练更容易收敛。可能的原因是两者读取出来的数据转化为pytorch中Tensor变量稍有不同,这里进行测试。
之后的代码都导入了:
from PIL import Image import matplotlib.pyplot as plt import numpy as np import torch import cv2
测试
使用PIL和cv2读取图片时会有细微的区别,通过下面的代码可以发现两者读取图片是有区别的,也就是使用PIL读取出来的图片转为numpy格式和直接使用cv读取的图片在像素点上并不是完全一致:
In[11]: image = cv2.imread('datasets/0_target.jpg') In[18]: image_pil = Image.open('datasets/0_target.jpg').convert('RGB') In[19]: image_pil = np.array(image_pil) In[20]: image_cv = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) In[21]: image_cv == image_pil Out[21]: array([[[ True, True, False], [ True, False, False], [False, False, False], ..., [ True, True, True], [ True, True, True], [ True, True, True]], [[ True, True, False], [ True, True, True], [False, True, False], ..., [ True, True, False], [ True, True, True], [ True, True, True]], [[ True, True, False], [ True, True, True], [False, False, False], ..., [ True, True, True], [ True, True, True], [ True, True, False]], ..., [[ True, True, True], [ True, True, True], [ True, True, True], ..., [False, False, True], [ True, True, True], [False, False, False]], [[ True, True, True], [ True, True, True], [ True, True, True], ..., [ True, True, True], [ True, True, True], [False, False, False]], [[ True, False, False], [ True, False, False], [ True, False, False], ..., [ True, True, True], [False, False, False], [ True, False, False]]]) In[26]: image_cv.shape Out[26]: (682, 700, 3) In[27]: image_pil.shape Out[27]: (682, 700, 3) In[28]: image_pil - image_cv Out[28]: array([[[ 0, 0, 1], [ 0, 255, 3], [255, 1, 2], ..., [ 0, 0, 0], [ 0, 0, 0], [ 0, 0, 0]], [[ 0, 0, 2], [ 0, 0, 0], [255, 0, 2], ..., [ 0, 0, 254], [ 0, 0, 0], [ 0, 0, 0]], [[ 0, 0, 2], [ 0, 0, 0], [255, 1, 2], ..., [ 0, 0, 0], [ 0, 0, 0], [ 0, 0, 254]], ..., [[ 0, 0, 0], [ 0, 0, 0], [ 0, 0, 0], ..., [254, 1, 0], [ 0, 0, 0], [ 1, 255, 3]], [[ 0, 0, 0], [ 0, 0, 0], [ 0, 0, 0], ..., [ 0, 0, 0], [ 0, 0, 0], [ 2, 254, 4]], [[ 0, 1, 253], [ 0, 1, 253], [ 0, 1, 255], ..., [ 0, 0, 0], [ 1, 254, 1], [ 0, 255, 2]]], dtype=uint8)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。