python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > collections模块知识点

python内置模块collections知识点总结

作者:angryTom

这篇文章主要介绍了python内置模块collections知识点总结,有兴趣的朋友们学习下。

python内置模块collections介绍

collections是Python内建的一个集合模块,提供了许多有用的集合类。

1、namedtuple

python提供了很多非常好用的基本类型,比如不可变类型tuple,我们可以轻松地用它来表示一个二元向量。

>>> v = (2,3)

我们发现,虽然(2,3)表示出了一个向量的两个坐标,但是,如果没有额外说明,又很难直接看出这个元组是用来表示一个坐标的。

为此定义一个class又小题大做了,这时,namedtuple就派上用场了。

>>> from collections import namedtuple

>>> Vector = namedtuple('Vector', ['x', 'y'])

>>> v = Vector(2,3)

>>> v.x

2

>>> v.y

3

namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。

这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。

我们可以验证创建的Vector对象的类型。

>>> type(v)

<class '__main__.Vector'>

>>> isinstance(v, Vector)

True

>>> isinstance(v, tuple)

True

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

>>> Circle = namedtuple('Circle', ['x', 'y', 'r'])

# namedtuple('名称', [‘属性列表'])

2、deque

在数据结构中,我们知道队列和堆栈是两个非常重要的数据类型,一个先进先出,一个后进先出。在python中,使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向链表结构,非常适合实现队列和堆栈这样的数据结构。

>>> from collections import deque

>>> deq = deque([1, 2, 3])

>>> deq.append(4)

>>> deq

deque([1, 2, 3, 4])

>>> deq.appendleft(5)

>>> deq

deque([5, 1, 2, 3, 4])

>>> deq.pop()

4

>>> deq.popleft()

5

>>> deq

deque([1, 2, 3])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。

3、defaultdict

使用dict字典类型时,如果引用的key不存在,就会抛出KeyError。如果希望Key不存在时,返回一个默认值,就可以用defaultdict。

>>> from collections import defaultdict

>>> dd = defaultdict(lambda: 'defaultvalue')

>>> dd['key1'] = 'a'

>>> dd['key1']

'a'

>>> dd['key2'] # key2未定义,返回默认值

'defaultvalue'

注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。

除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。

4、OrderedDict

使用dict时,key是无序的。在对dict做迭代时,我们无法确定key的顺序。

但是如果想要保持key的顺序,可以用OrderedDict。

>>> from collections import OrderedDict

>>> d = dict([('a', 1), ('b', 2), ('c', 3)])

>>> d # dict的Key是无序的

{'a': 1, 'c': 3, 'b': 2}

>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])

>>> od # OrderedDict的Key是有序的

OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的key会按照插入的顺序排列,不是key本身排序

>>> od = OrderedDict()

>>> od['z'] = 1

>>> od['y'] = 2

>>> od['x'] = 3

>>> list(od.keys()) # 按照插入的Key的顺序返回

['z', 'y', 'x']

OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的key。

from collections import OrderedDict

class LastUpdatedOrderedDict(OrderedDict):

  def __init__(self, capacity):

    super(LastUpdatedOrderedDict, self).__init__()

    self._capacity = capacity

  def __setitem__(self, key, value):

    containsKey = 1 if key in self else 0

    if len(self) - containsKey >= self._capacity:

      last = self.popitem(last=False)

      print('remove:', last)

    if containsKey:

      del self[key]

      print('set:', (key, value))

    else:

      print('add:', (key, value))

    OrderedDict.__setitem__(self, key, value)

5、ChainMap

ChainMap可以把一组dict串起来并组成一个逻辑上的dict。ChainMap本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。

什么时候使用ChainMap最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数。

下面的代码演示了如何查找user和color这两个参数。

from collections import ChainMap

import os, argparse

# 构造缺省参数:

defaults = {

  'color': 'red',

  'user': 'guest'

}

# 构造命令行参数:

parser = argparse.ArgumentParser()

parser.add_argument('-u', '--user')

parser.add_argument('-c', '--color')

namespace = parser.parse_args()

command_line_args = { k: v for k, v in vars(namespace).items() if v }

# 组合成ChainMap:

combined = ChainMap(command_line_args, os.environ, defaults)

# 打印参数:

print('color=%s' % combined['color'])

print('user=%s' % combined['user'])

没有任何参数时,打印出默认参数:

$ python3 use_chainmap.py 

color=red

user=guest

当传入命令行参数时,优先使用命令行参数:

$ python3 use_chainmap.py -u bob

color=red

user=bob

同时传入命令行参数和环境变量,命令行参数的优先级较高:

$ user=admin color=green python3 use_chainmap.py -u bob

color=green

user=bob

6、Counter

Counter是一个简单的计数器,例如,统计字符出现的个数:

from collections import Counter

>>> s = 'abbcccdddd'

>>> Counter(s)

Counter({'d': 4, 'c': 3, 'b': 2, 'a': 1})

Counter实际上也是dict的一个子类。

7、小结

collections模块提供了一些有用的集合类,可以根据需要选用。

以上就是python内置模块collections介绍的详细内容,感谢大家的学习和对脚本之家的支持。

您可能感兴趣的文章:
阅读全文