java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > JavaCAS知识

简单了解JavaCAS的相关知识原理

作者:赐我白日梦

这篇文章主要介绍了简单了解JavaCAS的相关知识,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

JMM与问题引入

为啥先说JMM,因为CAS的实现类中维护的变量都被volatile修饰, 这个volatile 是遵循JMM规范(不是百分百遵循,下文会说)实现的保证多线程并发访问某个变量实现线程安全的手段

一连串的知识点慢慢缕

首先说什么是JMM, JMM就是大家所说的java的内存模型, 它是人们在逻辑上做出的划分, 或者可以将JMM当成是一种规范, 有哪些规范呢? 如下

JVM运行的实体是线程, 每一个线程在创建之后JVM都会为其创建一个工作空间, 这个工作空间是每一个线程之间的私有空间, 并且任何两条线程之间的都不能直接访问到对方的工作空间, 线程之间的通信,必须通过共享空间来中转完成

JMM规定所有的变量全部存在主内存中,主内存是一块共享空间,那么如果某个线程相对主内存中共享变量做出修改怎么办呢? 像

下面这样:

JMM还规定如下:

问题引入

这时候如果多个线程并发按照上面的三步走去访问主内存中的共享变量的话就会出现线程安全性的问题, 比如说 现在主内存中的共享变量是c=1, 有AB两个线程去并发访问这个c变量, 都想进行c++, 现在A将c拷贝到自己的工作空间进行c++, 于是c=2 , 于此同时线程B也进行c++, c在B的工作空间中=2, AB线程将结果写回工作空间最终的结果就是2, 而不是我们预期的3

相信怎么解决大家都知道, 就是使用JUC,中的原子类就能规避这个问题

而原子类的底层实现使用的就是CAS技术

什么是CAS

CAS(compare and swap) 顾名思义: 比较和交换,在JUC中原子类的底层使用的都是CAS无锁实现线程安全,是一门很炫的技术

如下面两行代码, 先比较再交换, 即: 如果从主内存中读取到的值为4就将它更新为2019

  AtomicInteger atomicInteger = new AtomicInteger(4);
  atomicInteger.compareAndSet(4,2019);

跟进AtomicInteger的源码如下, 底层维护着一个int 类型的 变量, (当然是因为我选择的原来类是AtomicInteger类型), 并且这个int类型的值被 volatile 修饰

 private volatile int value;

 /**
  * Creates a new AtomicInteger with the given initial value.
  *
  * @param initialValue the initial value
  */
 public AtomicInteger(int initialValue) {
  value = initialValue;
 }

什么是volatile

volatile是JVM提供的轻量的同步机制, 为什么是轻量界别呢? , 刚才在上面说了JMM规范中提到了三条特性, 而JVM提供的volatile仅仅满足上面的规范中的 2/3, 如下:

单独的volatile是不能满足原子性的,即如下代码在多线程并发访问的情况下依然会出现线程安全性问题

private volatile int value;
 
public void add(){
 value++; 
}

那么JUC的原子类是如何实现的 可以满足原子性呢? 于是就不得不说本片博文的主角, CAS

CAS源码跟进

我们跟进AtomicInteger中的先递增再获取的方法 incrementAndGet()

 public final int incrementAndGet() {
  return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
 }

通过代码我们看到调用了Unsafe类来实现

什么是Unsafe类?

进入Unsafe类,可以看到他里面存在大量的 native方法,这些native方法全部是空方法,

这个unsafe类其实相当于一个后门,他是java去访问调用系统上 C C++ 函数类库的方法 如下图

继续跟进这个方法incrementAndGet() 于是我们就来到了我们的主角方法, 关于这个方法倒是不难理解,主要是搞清楚方法中的var12345到底代表什么就行, 如下代码+注释

var1: 上一个方法传递进来的: this,即当前对象
var2: 上一个方法传递进来的valueOffset, 就是内存地址偏移量
  通过这个内存地址偏移量我能精确的找到要操作的变量在内存中的地址
  
var4: 上一个方法传递进来的1, 就是每次增长的值
var5: 通过this和内存地址偏移量读取出来的当前内存中的目标值
public final int getAndAddInt(Object var1, long var2, int var4) {
  int var5;
  do {
   var5 = this.getIntVolatile(var1, var2);
  } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

  return var5;
 }

注意它用的是while循环, 相对if(flag){} 这种写法会多一次判断, 整体的思路就是 在进行修改之前先进行一次比较,如果读取到的当前值和预期值是相同的,就自增,否则的话就继续轮询修改

小总结

通过上面的过程, 其实就能总结出CAS的底层实现原理

补充: CAS通过Native方法的底层实现,本质上是操作系统层面上的CPU的并发原语,JVM会直接实现出汇编层面的指令,依赖于硬件去实现, 此外, 对于CPU的原语来说, 有两条特性1,必定连续, 2.不被中断

CAS的优缺点

优点:

它的底层我们看到了通过do-while 实现的自旋锁来实现, 就省去了在多个线程之间进行切换所带来的额外的上下文切换的开销

缺点:

ABA问题

什么是ABA问题

我们这样玩, 还是AB两个线程, 给AtomicInteger赋初始值0

A线程中的代码如下:

  Thread.sleep(3000);
  atomicInteger.compareAndSet(0,2019);

B线程中的代码如下:

  atomicInteger.compareAndSet(0,1);
  atomicInteger.compareAndSet(1,0);

AB线程同时启动, 虽然最终的结果A线程能成果的将值修改成2019,,但是它不能感知到在他睡眠过程中B线程对数据进行过改变, 换句话说就是A线程被B线程欺骗了

ABA问题的解决--- AtomicStampedRefernce.java

带时间戳的原子引用, 实现的机制就是通过 原子引用+版本号来完成, 每次对指定值的修改相应的版本号会加1, 实例如下

  // 0表示初始化, 1表示初始版本号
  AtomicStampedReference<Integer> reference = new AtomicStampedReference<>(0, 1);
  reference.getStamp(); // 获取版本号
  reference.attemptStamp(1,2); // 期待是1, 如果是1就更新为2

原子引用

JUC中我们可以找到像AtomicInteger这样已经定义好了实现类, 但是JUC没有给我们提供类似这样 AtomicUser或者 AtomicProduct 这样自定义类型的原子引用类型啊, 不过java仍然是提供了后门就是 原子引用类型

使用实例:

  User user = getUserById(1);
  AtomicReference<User> userAtomicReference = new AtomicReference<User>();
  user.setUsername("张三");
  userAtomicReference.compareAndSet(user,user);

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文