python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Pandas缺失

简单了解Pandas缺失值处理方法

作者:太虚真人

这篇文章主要介绍了简单了解Pandas缺失值处理方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

这篇文章主要介绍了简单了解Pandas缺失值处理方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

判断数据是否为NaN:

pd.isnull(df),
pd.notnull(df)

判断缺失值是否存在

np.all(pd.notnull(data)) # 返回false代表有空值
np.any(pd.isnull(data)) #返回true代表有空值

处理方式:

# 替换存在缺失值的样本的两列
# 替换填充平均值,中位数
movie['Revenue (Millions)'].fillna(movie['Revenue (Millions)'].mean(), inplace=True)
# 把一些其它值标记的缺失值,替换成np.nan
wis = wis.replace(to_replace='?', value=np.nan)

SSL报错

以上数据在读取时,可能会报如下错误

URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:833)>

解决办法:

# 全局取消证书验证
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文