python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python scipy二维图像卷积运算与图像模糊处理

Python scipy的二维图像卷积运算与图像模糊处理操作示例

作者:cakincqm

这篇文章主要介绍了Python scipy的二维图像卷积运算与图像模糊处理操作,涉及Python数学运算与图形绘制相关操作技巧,需要的朋友可以参考下

本文实例讲述了Python scipy的二维图像卷积运算与图像模糊处理操作。分享给大家供大家参考,具体如下:

二维图像卷积运算

一 代码

import numpy as np
from scipy import signal, misc
import matplotlib.pyplot as plt
image = misc.ascent()#二维图像数组,lena图像
w = np.zeros((50,50))#全0二维数组,卷积核
w[0][0]=1.0#修改参数,调整滤波器
w[49][25]=1.0#可以根据需要调整
image_new = signal.fftconvolve(image, w)#使用FFT算法进行卷积
plt.figure()
plt.imshow(image_new)#显示滤波后的图像
plt.gray()
plt.title('Filtered image')
plt.show()

二 运行结果

图像进行模糊处理

一 代码

import numpy as np
from scipy import signal, misc
import matplotlib.pyplot as plt
image = misc.ascent()
w = signal.gaussian(50,10.0)
image_new = signal.sepfir2d(image, w, w)
plt.figure()
plt.imshow(image_new)#显示滤波后的图像
plt.gray()
plt.title('Filtered image')
plt.show()

二 运行结果

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:
阅读全文