python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > PyTorch nn.Module

浅析PyTorch中nn.Module的使用

作者:Steven·简谈

这篇文章主要介绍了浅析PyTorch中nn.Module的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

torch.nn.Modules 相当于是对网络某种层的封装,包括网络结构以及网络参数和一些操作

torch.nn.Module 是所有神经网络单元的基类

查看源码

初始化部分:

def __init__(self):
  self._backend = thnn_backend
  self._parameters = OrderedDict()
  self._buffers = OrderedDict()
  self._backward_hooks = OrderedDict()
  self._forward_hooks = OrderedDict()
  self._forward_pre_hooks = OrderedDict()
  self._state_dict_hooks = OrderedDict()
  self._load_state_dict_pre_hooks = OrderedDict()
  self._modules = OrderedDict()
  self.training = True
 

属性解释:

方法定义:

def forward(self, *input):
 raise NotImplementedError
 

没有实际内容,用于被子类的 forward() 方法覆盖

且 forward 方法在 __call__ 方法中被调用:

def __call__(self, *input, **kwargs):
 for hook in self._forward_pre_hooks.values():
    hook(self, input)
  if torch._C._get_tracing_state():
    result = self._slow_forward(*input, **kwargs)
  else:
    result = self.forward(*input, **kwargs)
  ...
  ...
 

实例展示

简单搭建:

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
  def __init__(self, n_feature, n_hidden, n_output):
    super(Net, self).__init__()
    self.hidden = nn.Linear(n_feature, n_hidden)
    self.out = nn.Linear(n_hidden, n_output)

  def forward(self, x):
    x = F.relu(self.hidden(x))
    x = self.out(x)
    return x

Net 类继承了 torch 的 Module 和 __init__ 功能

hidden 是隐藏层线性输出

out 是输出层线性输出

打印出网络的结构:

>>> net = Net(n_feature=10, n_hidden=30, n_output=15)
>>> print(net)
Net(
 (hidden): Linear(in_features=10, out_features=30, bias=True)
 (out): Linear(in_features=30, out_features=15, bias=True)
)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文