基于pytorch的保存和加载模型参数的方法
作者:hit_zc
今天小编就为大家分享一篇基于pytorch的保存和加载模型参数的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
当我们花费大量的精力训练完网络,下次预测数据时不想再(有时也不必再)训练一次时,这时候torch.save(),torch.load()就要登场了。
保存和加载模型参数有两种方式:
方式一:
torch.save(net.state_dict(),path):
功能:保存训练完的网络的各层参数(即weights和bias)
其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth)
net2.load_state_dict(torch.load(path)):
功能:加载保存到path中的各层参数到神经网络
注意:不可以直接为torch.load_state_dict(path),此函数不能直接接收字符串类型参数
方式二:
torch.save(net,path):
功能:保存训练完的整个网络模型(不止weights和bias)
net2=torch.load(path):
功能:加载保存到path中的整个神经网络
说明:官方推荐方式一,原因自然是保存的内容少,速度会更快。
以上这篇基于pytorch的保存和加载模型参数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。