python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > pandas 对日期类型数据的处理

pandas 对日期类型数据的处理方法详解

作者:Stone0823

这篇文章主要介绍了pandas 对日期类型数据的处理方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

pandas 的日期/时间类型有如下几种:

Concept Scalar Class Array Class pandas Data Type Primary Creation Method
Date times Timestamp DatetimeIndex datetime64[ns] or datetime64[ns, tz] to_datetime or date_range
Time deltas Timedelta TimedeltaIndex timedelta64[ns] to_timedelta or timedelta_range
Time spans Period PeriodIndex period[freq] Period or period_range
Date offsets DateOffset None None DateOffset


本文介绍在处理时点数 (point in time) 一些常用的处理方法,仍然以上一篇的示例数据为例进行讲解。pandas 用 Timestamp 表示时点数,在大多数情况下和 python 的 datetime 类型的使用方法是通用的。

首先获取数据,并且将 DataFrame 的 date 列转换成 datetime 类型:

df1 = pd.read_csv('https://raw.githubusercontent.com/stonewm/python-practice-projects/master/pandas%20sample%20data/sample-salesv3.csv')
df1['date'] = pd.to_datetime(df1['date']) # convert date column to datetime
df1.head()

也可以在 read_csv() 方法中,通过 parse_dates 参数直接将某些列转换成 datetime64 类型:

df1 = pd.read_csv('sample-salesv3.csv', parse_dates=['date'])

我们据此销售数据,按月份、按季度统计 sku 的销售金额。
pandas 的 pandas.Series.dt 可以获得日期/时间类型的相关信息。比如

df1['date'].dt.year
df1['date'].dt.month
df1['date'].dt.quarter

但这些类型返回值为 int 类型,作为统计的字段,我们更希望是 2014-04 这样的格式,有两个方法:

# 方法 1
df1['year_month'] = df1['date'].apply(lambda x : x.strftime('%Y-%m'))

第二种方法:

df1['period'] = df1['date'].dt.to_period('M')

第二种方法使用起来更加简单,参数 M 表示月份,Q 表示季度,A 表示年度,D 表示按天,这几个参数比较常用。
新增了一列之后,做出数据透视表:

import numpy as np
pivot = pd.pivot_table(df1, index=['sku'], columns=['period'], values=['ext price'], aggfunc=np.sum)
pivot.head()

再做一个按季度统计的数据透视表:

df1['quarter'] = df1['date'].dt.to_period('Q')
quarter_pivot = pd.pivot_table(df1, index=['sku'], columns=['quarter'], values=['ext price'], aggfunc=np.sum)

参考

Time Series / Date functionality

Extracting just Month and Year from Pandas Datetime column

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文