python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > Python OpenCV调用摄像头检测人脸并截图

Python OpenCV调用摄像头检测人脸并截图

作者:gaoyueace

这篇文章主要为大家详细介绍了Python OpenCV调用摄像头检测人脸并截图,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了Python OpenCV调用摄像头检测人脸并截图的具体代码,供大家参考,具体内容如下

注意:需要在python中安装OpenCV库,同时需要下载OpenCV人脸识别模型haarcascade_frontalface_alt.xml,模型可在OpenCV-PCA-KNN-SVM_face_recognition中下载。

使用OpenCV调用摄像头检测人脸并连续截图100张

#-*- coding: utf-8 -*-
# import 进openCV的库
import cv2

###调用电脑摄像头检测人脸并截图

def CatchPICFromVideo(window_name, camera_idx, catch_pic_num, path_name):
 cv2.namedWindow(window_name)

 #视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
 cap = cv2.VideoCapture(camera_idx)

 #告诉OpenCV使用人脸识别分类器
 classfier = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")

 #识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组
 color = (0, 255, 0)

 num = 0
 while cap.isOpened():
 ok, frame = cap.read() #读取一帧数据
 if not ok:
  break

 grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #将当前桢图像转换成灰度图像

 #人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
 faceRects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
 if len(faceRects) > 0:  #大于0则检测到人脸
  for faceRect in faceRects: #单独框出每一张人脸
  x, y, w, h = faceRect

  #将当前帧保存为图片
  img_name = "%s/%d.jpg" % (path_name, num)
  #print(img_name)
  image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
  cv2.imwrite(img_name, image,[int(cv2.IMWRITE_PNG_COMPRESSION), 9])

  num += 1
  if num > (catch_pic_num): #如果超过指定最大保存数量退出循环
   break

  #画出矩形框
  cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)

  #显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着
  font = cv2.FONT_HERSHEY_SIMPLEX
  cv2.putText(frame,'num:%d/100' % (num),(x + 30, y + 30), font, 1, (255,0,255),4)

  #超过指定最大保存数量结束程序
 if num > (catch_pic_num): break

 #显示图像
 cv2.imshow(window_name, frame)
 c = cv2.waitKey(10)
 if c & 0xFF == ord('q'):
  break

  #释放摄像头并销毁所有窗口
 cap.release()
 cv2.destroyAllWindows()

if __name__ == '__main__':
 # 连续截100张图像,存进image文件夹中
 CatchPICFromVideo("get face", 0, 99, "/image")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文