python算法与数据结构之冒泡排序实例详解
作者:Se7eN_HOU
一、冒泡排序介绍
冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
二、冒泡排序原理
- 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
- 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。这一步做完,最后的元素应该会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
三、冒泡排序图解
四、冒泡排序总结
有N个数据需要比较N-1趟
每趟比较N-i次,i表示第几趟,例如7个数据,第四趟需要比较 7-4 = 3次
五、冒泡排序python代码实现
def bubble_sort(numlist): # 需要排列的数据个数 N = len(numlist) # i 控制一共需要多少趟 N-1 for i in range(N-1): # j 控制每趟需要比较多少次(因为i是从0开始,所以N-i-1) for j in range(N-i-1): # 判断j和j+1两个位置的数据大小 if numlist[j]>numlist[j+1]: # 交换(交换的代码有很多种写法) temp = numlist[j] numlist[j] = numlist[j+1] numlist[j+1] = temp list = [19,2,13,8,34,25,7] print("排序前list = %s"%list) bubble_sort(list) print("排序后list = %s"%list)
运行结果为:
排序前list = [19, 2, 13, 8, 34, 25, 7]
排序后list = [2, 7, 8, 13, 19, 25, 34]
六、冒泡排序C语言代码实现
#include <stdio.h> // 创建一个冒泡函数,需要传递一个数组,和数组的长度 void bubble_sort(int array[],int arrayLength) { // i 控制一共需要循环多少趟, for (int i=0; i<arrayLength-1; i++) { // j 控制每趟循环多少次 for (int j=0; j<arrayLength-i-1; j++) { //判断j和j+1位置上数的大小 if (array[j]>array[j+1]) { //交换 int temp = array[j]; array[j] = array[j+1]; array[j+1] = temp; } } } } int main(int argc, const char * argv[]) { // 函数的声明 void bubble_sort(int array[],int arrayLength); // 创建一个数组 int numArray[] = {19,2,13,8,34,25,7}; //进行排序 bubble_sort(numArray,7); printf("打印排序后的数组是:\n"); for (int i=0; i<7; i++) { printf("%d ",numArray[i]); } return 0; }
运算结果为:
打印排序后的数组是:
2 7 8 13 19 25 34
七、冒泡排序的优化
通过上面的案例我们已经知道冒泡排序的原理和实现过程,但是在处理一些特殊数据上的时候,我们还可以对冒泡排序优化,例如:一个数组本来就是有序,1,2,3,4,5,6,7,这样的一个数组已经是正确的顺序的,我们只需要比较一趟后,发现这一趟所有的数据都没有发生改变,就说明这已经是一个正确的顺序的,后面的循环就没必要循环下去了,这样便能提高程序的效率,而我们只需要在冒泡排序的代码中,判断是否这一样都没发生交换即可。
python代码实现如下:
def bubble_sort(numlist): # 需要排列的数据个数 N = len(numlist) # i 控制一共需要多少趟 N-1 for i in range(N-1): # 定义一个变量,用于记录是否在本趟中发生了交换 isChange = 0 # j 控制每趟需要比较多少次(因为i是从0开始,所以N-i-1) for j in range(N-i-1): # 判断j和j+1两个位置的数据大小 if numlist[j]>numlist[j+1]: # 交换(交换的代码有很多种写法) temp = numlist[j] numlist[j] = numlist[j+1] numlist[j+1] = temp # 只要发生了交换,我们就改变isChange的值为1 isChange = 1 # 只要isChange =0说明已经是正确顺序了,直接break即可 if isChange == 0: break list = [19,2,13,8,34,25,7] print("排序前list = %s"%list) bubble_sort(list) print("排序后list = %s"%list)
运行结果为:
排序前list = [19, 2, 13, 8, 34, 25, 7]
排序后list = [2, 7, 8, 13, 19, 25, 34]
C语言代码实现如下:
#include <stdio.h> // 创建一个冒泡函数,需要传递一个数组,和数组的长度 void bubble_sort(int array[],int arrayLength) { // i 控制一共需要循环多少趟, for (int i=0; i<arrayLength-1; i++) { //定义一个变量,用于记录是否在本趟中发生了改变 int isChange = 0; // j 控制每趟循环多少次 for (int j=0; j<arrayLength-i-1; j++) { //判断j和j+1位置上d数的大小 if (array[j]>array[j+1]) { //交换 int temp = array[j]; array[j] = array[j+1]; array[j+1] = temp; // 只要发生了交换,我们就改变isChange的值为1 isChange = 1; } } // 只要isChange =0说明已经是正确顺序了,直接break即可 if (isChange == 0) { break; } } } int main(int argc, const char * argv[]) { // 函数的声明 void bubble_sort(int array[],int arrayLength); // 创建一个数组 int numArray[] = {19,2,13,8,34,25,7}; //进行排序 bubble_sort(numArray,7); printf("打印排序后的数组是:\n"); for (int i=0; i<7; i++) { printf("%d ",numArray[i]); } return 0; }
运行结果为:
打印排序后的数组是:
2 7 8 13 19 25 34
八、冒泡排序的时间复杂度
最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
最坏时间复杂度:O(n2)
九、冒泡排序算法的稳定性
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
侯哥语录:我曾经是一个职业教育者,现在是一个自由开发者。我希望我的分享可以和更多人一起进步。分享一段我喜欢的话给大家:"我所理解的自由不是想干什么就干什么,而是想不干什么就不干什么。当你还没有能力说不得时候,就努力让自己变得强大,拥有说不得权利。"
总结
以上所述是小编给大家介绍的python算法与数据结构之冒泡排序实例详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!