C 语言

关注公众号 jb51net

关闭
首页 > 软件编程 > C 语言 > Opencv轮廓提取功能

Opencv实现轮廓提取功能

作者:东城青年

这篇文章主要为大家详细介绍了Opencv实现轮廓提取功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

轮廓:一个轮廓代表一系列的点(像素),这一系列的点构成一个有序的点集,所以可以把一个轮廓理解为一个有序的点集。

在opencv中,提供了一个函数返回一个有序的点集或者有序的点集的集合(指多个有序的点集),函数findContour是从二值图像中来计算轮廓的,一般使用Canny()函数处理后的图像,因为这样的图像含有边缘像素。

寻找轮廓的API函数:

findContours(image,vector<vector<Point>> contours,vector<Vec4i>hierarchy,int mode,int method,Point offset = Point(0,0));

参数解释:

(1)image:单通道图像矩阵,一般是经过canny处理后的二值图像;

(2)contours:vector<vector<Point>>类型,是一个向量,并且是一个双重向量,向量内每个元素保存了一组由连续的Point点构成的点的集合的向量,每一组Point点集就是一个轮廓。有多少轮廓,向量contours就有多少元素;

(3)hierarchy:vector<Vec4i> 类型, 即容器内每一个元素都是一个包含了4个int型变量的向量,向量内每个元素保存了一个包含4个int整型的数组。向量hiararchy内的元素和轮廓向量contours内的元素是一一对应的,向量的容量相同。hierarchy向量内每一个元素的4个int型变量——hierarchy[i][0] ~hierarchy[i][3],分别表示第i个轮廓的后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号。如果当前轮廓没有对应的后一个轮廓、前一个轮廓、父轮廓或内嵌轮廓的话,则hierarchy[i][0] ~hierarchy[i][3]的相应位被设置为默认值-1;

(4)mode:int类型的,定义轮廓的检索模式:

(5)method:int类型,定义轮廓的近似方法:  

(6) Point:偏移量,所有的轮廓信息相对于原始图像对应点的偏移量,相当于在每一个检测出的轮廓点上加上该偏移量,一般不偏移取Point(0,0)。

画轮廓的API函数:

drawContours(Outputimage,contours,hierarchy,int contourIdx,color,int thickness ,int lineType,hierarchy = noArray(),int maxLevel = INT_MAX,Point offset = Point(0,0))
参数解释:

    (1)outputimage: 将轮廓画在该图上;
    (2)contours:前面寻找到的轮廓;
    (3)contourIdx:是一个索引,代表绘制contours中的第几个轮廓;
    (4) color:颜色;
    (5)thickness: 线宽;
    (6)lineType: 线型;
    (7)hierarchy:可选层次信息结构,这里面是findContours所的到的基于Contours的层级信息;
    (8)maxLevel: 绘制轮廓的最大等级。如果等级为0,绘制单独的轮廓。如果为1,绘制轮廓及在其后的相同的级别下轮廓。如果等级为2,绘制所有同级轮廓及所有低一级轮廓,诸此种种。如果值为负数,函数不绘制同级轮廓,但会升序绘制直到级别为abs(max_level)-1的子轮廓;

    (9)offset:照给出的偏移量移动每一个轮廓点坐标.当轮廓是从某些感兴趣区域(ROI)中提取的然后需要在运算中考虑ROI偏移量时,将会用到这个参数。

以上定义摘自该篇博客:OpenCV实现轮廓的发现

#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std;
 
int value = 50;
Mat src, dst, canny_img;
void callback(int, void*);
int main(int arc, char** argv)
{ 
 src = imread("2.jpg");
 namedWindow("src",CV_WINDOW_AUTOSIZE);
 imshow("src", src);
 cvtColor(src, src, CV_BGR2GRAY);
 
 namedWindow("output", CV_WINDOW_AUTOSIZE);
 createTrackbar("threshold", "output", &value, 255, callback);
 callback(0, 0);
 waitKey(0);
 return 0;
}
void callback(int, void*) {
 Canny(src, canny_img, value, 2 * value);
 imshow("canny", canny_img);
 vector<vector<Point>>contours;
 vector<Vec4i>hierarchy;
 findContours(canny_img, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE,Point(0,0));
 
 dst = Mat::zeros(src.size(), CV_8UC3);
 RNG rng(1);
 for (int i = 0; i < contours.size(); i++) { 
 Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
 drawContours(dst, contours, i, color, 2, 8, hierarchy, 0, Point(0, 0));
 }
 imshow("output", dst);
} 

运行结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文