Python opencv实现人眼/人脸识别以及实时打码处理
作者:叶舟
这篇文章主要为大家详细介绍了Python opencv实现人眼、人脸识别,以及实时打码处理,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克。
系统环境:Windows 7 + Python 3.6.3 + opencv 3.4.2
一、系统、资源准备
要想达成该目标,需要满足一下几个条件:
- 找一台带有摄像头的电脑,一般笔记本即可;
- 需配有Python3,并安装NumPy包、opencv;
- 需要有已经训练好的分类器,用于识别视频中的人脸、人眼等,如无分类器,可以点击这里下载:haarcascades分类器
二、动手做
1、导入相关包、设置视频格式、调用摄像头、指定分类器
import numpy as np import cv2 fourcc = cv2.VideoWriter_fourcc("D", "I", "B", " ") out = cv2.VideoWriter('frame_mosic.MP4',fourcc, 20.0, (640,480)) cv2.namedWindow("CaptureFace") #调用摄像头 cap=cv2.VideoCapture(0) #人眼识别器分类器 classfier=cv2.CascadeClassifier("../haarcascades/haarcascade_eye_tree_eyeglasses.xml")
2、逐帧调用图像,并实时处理
从摄像头读取一帧图像后,先转化为灰度图像,然后利用指定的分类器识别出我们需要的内容,接着对该部分内容利用高斯噪声进行覆盖,以达成马赛克的目的。
代码如下:
while cap.isOpened(): read,frame=cap.read() if not read: break #灰度转换 grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) #人脸检测 Rects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32)) if len(Rects) > 0: for Rect in Rects: x, y, w, h = Rect # 打码:使用高斯噪声替换识别出来的人眼所对应的像素值 frame[y+10:y+h-10,x:x+w,0]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,1]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,2]=np.random.normal(size=(h-20,w)) cv2.imshow("CaptureFace",frame) if cv2.waitKey(5)&0xFF==ord('q'): break # 保存视频 out.write(frame) #释放相关资源 cap.release() out.release() cv2.destroyAllWindows()
3、观察效果
代码调用摄像头并在窗口进行了显示,可以实时观察到图像处理的效果,如图:
并将结果保存为视频,方便随时查看:
完整代码如下:
# -*- coding: utf-8 -*- import numpy as np import cv2 fourcc = cv2.VideoWriter_fourcc("D", "I", "B", " ") out = cv2.VideoWriter('frame_mosic.MP4',fourcc, 20.0, (640,480)) cv2.namedWindow("CaptureFace") #调用摄像头 cap=cv2.VideoCapture(0) #人眼识别器分类器 classfier=cv2.CascadeClassifier("../haarcascades/haarcascade_eye_tree_eyeglasses.xml") while cap.isOpened(): read,frame=cap.read() if not read: break #灰度转换 grey=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) #人脸检测 Rects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32)) if len(Rects) > 0: for Rect in Rects: x, y, w, h = Rect # 打码:使用高斯噪声替换识别出来的人眼所对应的像素值 frame[y+10:y+h-10,x:x+w,0]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,1]=np.random.normal(size=(h-20,w)) frame[y+10:y+h-10,x:x+w,2]=np.random.normal(size=(h-20,w)) cv2.imshow("CaptureFace",frame) if cv2.waitKey(5)&0xFF==ord('q'): break # 保存视频 out.write(frame) #释放相关资源 cap.release() out.release() cv2.destroyAllWindows()
利用opencv提供Python接口,可以很方便的进行图像、视频处理方面的学习研究,实在是很方便。这里把近期所学做个简单应用,后续再学习更深入的知识。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。