java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Redis延时处理

利用Redis实现延时处理的方法实例

作者:我一定会有猫的

这篇文章主要给大家介绍了关于利用Redis实现延时处理的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者使用Redis具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧

背景

在开发中,往往会遇到一些关于延时任务的需求。例如

•生成订单30分钟未支付,则自动取消

•生成订单60秒后,给用户发短信

对上述的任务,我们给一个专业的名字来形容,那就是延时任务。

最近需要做一个延时处理的功能,主要是从kafka中消费消息后根据消息中的某个延时字段来进行延时处理,在实际的实现过程中有一些需要注意的地方,记录如下。

实现过程

说到java中的定时功能,首先想到的Timer和ScheduledThreadPoolExecutor,但是相比之下Timer可以排除,主要原因有以下几点:

1、ScheduledThreadPoolExecutor决定了用ScheduledThreadPoolExecutor来进行实现,接下来就是代码编写啦(大体流程代码)。

主要的延时实现如下:

ScheduledExecutorService executorService = new ScheduledThreadPoolExecutor(10, new NamedThreadFactory("scheduleThreadPool"), new 
ThreadPoolExecutor.AbortPolicy());
//从消息中取出延迟时间及相关信息的代码略
int delayTime = 0;
executorService.scheduleWithFixedDelay(new Runnable() {
  @Override
  public void run() {
   //具体操作逻辑
  }},0,delayTime, TimeUnit.SECONDS);

其中NamedThreadFactory是我自定义的一个线程工厂,主要给线程池定义名称及相关日志打印便于后续的问题分析,这里就不多做介绍了。拒绝策略也是采用默认的拒绝策略。

然后测试了一下,满足目标需求的功能,可以做到延迟指定时间后执行,至此似乎功能就被完成了。

大家可能疑问,这也太简单了有什么好说的,但是这种方式实现简单是简单但是存在一个潜在的问题,问题在哪呢,让我们看一下ScheduledThreadPoolExecutor的源码:

public ScheduledThreadPoolExecutor(int corePoolSize,ThreadFactory threadFactory) {
 super(corePoolSize, Integer.MAX_VALUE, 0, 
 TimeUnit.NANOSECONDS,new DelayedWorkQueue(), threadFactory);}

ScheduledThreadPoolExecutor由于它自身的延时和周期的特性,默认使用了DelayWorkQueue,而并不像我们平时使用的SingleThreadExecutor等构造是可以使用自己定义的LinkedBlockingQueue并且设置队列大小,问题就出在这里。

DelayWrokQueue是一个无界队列,而我们的目标数据源是kafka,也就是一个高并发高吞吐的消息队列,很大可能在某一时间段有大量的消息过来从而导致OOM,在使用多线程时我们是肯定要考虑到OOM的可能性的,因为OOM带来的后果往往比较严重,系统OOM临时的解决办法一般只能是重启,可能会导致用户数据丢失等不可能挽回的问题,所以从编码设计阶段要采用尽可能稳妥的手段来避免这些问题。

2、采用redis和线程结合

这一次换了思路,采用redis来帮助我们做缓冲,从而避免消息过多OOM的问题。

相关redis zset api:

//添加元素
ZADD key score member [[score member] [score member] …]
//根据分值及限制数量查询
ZRANGEBYSCORE key min max [WITHSCORES] [LIMIT offset count]
//从zset中删除指定成员
ZREM key member [member …]

我们采用redis基础数据结构的zset结构,采用score来存储我们目标发送时间的数值,整体处理流程如下:

public void onMessage(String topic, String message) {
  String orderId;
		int delayTime = 0;
  try {
   Map<String, String> msgMap = gson.fromJson(message, new TypeToken<Map<String, String>>() {
   }.getType());
   if (msgMap.isEmpty()) {
    return;
   }
   LOGGER.info("onMessage kafka content:{}", msgMap.toString());
	 orderId = msgMap.get("orderId");
   if(StringUtils.isNotEmpty(orderId)){
    delayTime = Integer.parseInt(msgMap.get("delayTime"));
    Calendar calendar = Calendar.getInstance();
    //计算出预计发送时间
    calendar.add(Calendar.MINUTE, delayTime);
    long sendTime = calendar.getTimeInMillis();
    RedisUtils.getInstance().zetAdd(Constant.DELAY, sendTime, orderId);
    LOGGER.info("orderId:{}---放入redis中等待发送---sendTime:{}", ---orderId:{}, sendTime);
   }
  } catch (Exception e) {
   LOGGER.info("onMessage 延时发送异常:{}", e);
  }
 }
public void run(){
  //获取批量大小
  int orderNum = Integer.parseInt(PropertyUtil.get(Constant.ORDER_NUM,"100"));
  try {
   //批量获取离发送时间最近的orderNum条数据
	 Calendar calendar = Calendar.getInstance();
	 long now = calendar.getTimeInMillis();
	 //获取无限早到现在的事件key(防止上次批量数量小于放入数量,存在历史数据未消费情况)
	 Set<String> orderIds = RedisUtils.getInstance().zrangeByScore(Constant.DELAY, 0, now, 0, orderNum);
	 LOGGER.info("task.getOrderFromRedis---size:{}---orderIds:{}", orderIds.size(), gson.toJson(orderIds));
   if (CollectionUtils.isNotEmpty(orders)){
    //删除key 防止重复发送
    for (String orderId : orderIds) {
     RedisUtils.getInstance().zrem(Constant.DELAY, orderId);
    }
	  //接下来执行发送等业务逻辑     
   }
  } catch (Exception e) {
   LOGGER.warn("task.run exception:{}", e);
  }
 }

至此完成了依赖redis和线程完成了延时发送的功能。

结语

那么对上面两种不同的实现方式进行一下优缺点比较:

综上是本人这次延时功能的实现过程的两种实现方式的总结,具体采用哪种方式还需大家根据实际情况选择,希望能给大家带来帮助。ps:由于本人的技术能力有限,文章中可能出现技术描述不准确或者错误的情况恳请各位大佬指出,我立马进行改正,避免误导大家,谢谢!

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。

您可能感兴趣的文章:
阅读全文