numpy基础教程之np.linalg
作者:Inside_Zhang
这篇文章主要给大家介绍了关于numpy基础教程之np.linalg的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
前言
numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。本文讲给大家介绍关于numpy基础之 np.linalg的相关内容,下面话不多说了,来一起看看详细的介绍吧
(1)np.linalg.inv():矩阵求逆
(2)np.linalg.det():矩阵求行列式(标量)
np.linalg.norm
顾名思义,linalg=linear+algebra linalg=linear+algebra\mathrm{linalg=linear + algebra},norm norm\mathrm{norm}则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):
首先help(np.linalg.norm)查看其文档:
norm(x, ord=None, axis=None, keepdims=False)1
这里我们只对常用设置进行说明,x x\mathrm{x}表示要度量的向量,ord ord\mathrm{ord}表示范数的种类,
>>> x = np.array([3, 4]) >>> np.linalg.norm(x) 5. >>> np.linalg.norm(x, ord=2) 5. >>> np.linalg.norm(x, ord=1) 7. >>> np.linalg.norm(x, ord=np.inf) 4123456789
范数理论的一个小推论告诉我们:ℓ 1 ≥ℓ 2 ≥ℓ ∞ ℓ1≥ℓ2≥ℓ∞
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。