python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python使用插值法画出平滑曲线

python使用插值法画出平滑曲线

作者:wnma3mz

这篇文章主要为大家详细介绍了python使用插值法画出平滑曲线,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了python使用插值法画出平滑曲线的具体代码,供大家参考,具体内容如下

实现所需的库

numpy、scipy、matplotlib

实现所需的方法

插值

拟合和插值的区别

简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点。

拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点。

代码实现

# -*- coding: utf-8 -*-

# 调用模块
# 调用数组模块
import numpy as np
# 实现插值的模块
from scipy import interpolate
# 画图的模块
import matplotlib.pyplot as plt
# 生成随机数的模块
import random

# random.randint(0, 10) 生成0-10范围内的一个整型数
# y是一个数组里面有10个随机数,表示y轴的值
y = np.array([random.randint(0, 10) for _ in range(10)])
# x是一个数组,表示x轴的值
x = np.array([num for num in range(10)])

# 插值法之后的x轴值,表示从0到9间距为0.5的18个数
xnew = np.arange(0, 9, 0.5)

"""
kind方法:
nearest、zero、slinear、quadratic、cubic
实现函数func
"""
func = interpolate.interp1d(x, y, kind='cubic')
# 利用xnew和func函数生成ynew,xnew的数量等于ynew数量
ynew = func(xnew)

# 画图部分
# 原图
plt.plot(x, y, 'ro-')
# 拟合之后的平滑曲线图
plt.plot(xnew, ynew)
plt.show()

注意事项/p>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文