Python中GIL的使用详解
1、GIL简介
GIL的全称为Global Interpreter Lock,全局解释器锁。
1.1 GIL设计理念与限制
python的代码执行由python虚拟机(也叫解释器主循环,CPython版本)来控制,python在设计之初就考虑到在解释器的主循环中,同时只有一个线程在运行。即在任意时刻只有一个线程在解释器中运行。对python虚拟机访问的控制由全局解释锁GIL控制,正是这个锁来控制同一时刻只有一个线程能够运行。
在调用外部代码(如C、C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于期间没有python的字节码运行,所以不会做线程切换)。
在python中使用都是操作系统级别的线程,linux中使用的pthread,window使用的是其原生线程。
从上面的概述中可以直观的看出py在同一时刻只能跑一个线程,这样在跑多线程的情况下,只有当线程获取到全局解释器锁后才能运行,而全局解释器锁只有一个,因此即使在多核的情况下也只能发挥出单核的功能。
那么这样看起来py不给力啊,GIL直接导致CPython不能利用物理多核的性能加速运行。那么为什么会有这样的设计?考虑到Guido van Rossum 在创造python的时候,上世纪90年代,多核cpu完全属于不可想象的,现在由于硬件发展速度太快,程序编写就要考虑用尽cpu的全部性能,否则就要被淘汰,那么对于python同样也要如此。
上面主要说的是这种设计的劣势,下面再讨论它的优势。
GIL的设计简化了CPython的实现,使得对象模型,包括关键的内建类型如字典,都隐式可以并发访问。锁住全局解释器使得其比较容易的实现对多线程的支持,但也折损了多处理器主机的并行计算能力。
但是不论标准的,还是第三方的扩展模块,都被设计成在进行密集计算任务时释放GIL。另外还有在做IO操作时,GIL总是被释放。对所有面对内建的操作系统C代码的程序来说,GIL会在这个IO调用之前被释放,以允许其它的线程在等待这个IO的时候运行。如果是纯计算的程序,没有IO操作,解释器会每隔100次或每隔一定时间15ms去释放GIL。
这里可以理解为IO密集型的python比计算密集型的程序更能利用多线程环境带来的便利。
1.2 GIL对线程执行的影响
多线程环境中,python虚拟机按照以下方式执行:
- 设置GIL
- 切换到一个线程去执行
- 运行代码,这里有两种机制:
- 指定数量的字节码指令(100个)
- 固定时间15ms线程主动让出控制
- 把线程设置为睡眠状态
- 解锁GIL
- 再次重复以上步骤
上节说到python语言和程序一样要考虑用尽cpu的性能,下面在讨论py的应对方法。
python的应对方法很简单,在新的python3中依然有GIL,原因大概有下几点:
- CPython的GIL本意是用来保护所有全局的解释器和环境状态变量的,如果去掉GIL,就需要更多的更细粒度的锁对解释器的众多全局状态进行保护。或者采用Lock-Free算法。无论采用哪一种,要做到多线程安全都会比维系一个GIL要难得多。另外改动的还是CPython的代码树及其各种第三方扩展也在依赖GIL。
- 进一步说,有人做过测试将GIL去掉,加入更细粒度的锁。但是实践检测对单线程来说,性能更低。只有利用的物理cpu到一定数目后,性能才会比GIL版本好。且现在绝大部分的python程序都是单线程的。
然后最重要的还在于以下几个方面,简单来说就是py不改,一样能实现我们的需求。
- 自2.6引出的多进程标准库mutilprocessing,让多进程的python编写简化到类似多线程的程度,大大减轻GIL带来的诸多不利。
- 利用ctypes绕过GIL:ctypes可以使py直接调用任意的C动态库的导出函数。所要做的只是用ctypes写python代码即可。而且,ctypes会在调用C函数前释放GIL。
python中GIL使得同一个时刻只有一个线程在一个cpu上执行,无法将多个线程映射到多个cpu上执行,但GIL并不会一直占有,它会在适当的时候释放
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import threading count = 0 def add(): global count for i in range ( 10 * * 6 ): count + = 1 def minus(): global count for i in range ( 10 * * 6 ): count - = 1 thread1 = threading.Thread(target = add) thread2 = threading.Thread(target = minus) thread1.start() thread2.start() thread1.join() thread2.join() print (count) |
分别运行三次的结果:
-59452
60868
-77007
可以看到count并不是一个固定值,说明GIL会在某个时刻释放,那么GIL具体在什么情况下释放呢:
1.执行的字节码行数到达一定阈值
2.通过时间片划分,到达一定时间阈值
3.在遇到IO操作时,主动释放
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。
微信公众号搜索 “ 脚本之家 ” ,选择关注
程序猿的那些事、送书等活动等着你
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
如若内容造成侵权/违法违规/事实不符,请将相关资料发送至 reterry123@163.com 进行投诉反馈,一经查实,立即处理!
相关文章
使用Anaconda创建Pytorch虚拟环境的排坑详细教程
PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序,下面这篇文章主要给大家介绍了关于使用Anaconda创建Pytorch虚拟环境的相关资料,需要的朋友可以参考下2022-12-12
最新评论