java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java+opencv3.2.0实现人脸检测

Java+opencv3.2.0实现人脸检测功能

作者:帅气的猫爪

这篇文章主要为大家详细介绍了Java+opencv3.2.0实现人脸检测功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

说到人脸检测,首先要了解Haar特征分类器。Haar特征分类器说白了就是一个个的xml文件,不同的xml里面描述人体各个部位的特征值,比如人脸、眼睛等等。OpenCV3.2.0中提供了如下特征文件:

haarcascade_eye.xml
haarcascade_eye_tree_eyeglasses.xml
haarcascade_frontalcatface.xml
haarcascade_frontalcatface_extended.xml
haarcascade_frontalface_alt.xml
haarcascade_frontalface_alt_tree.xml
haarcascade_frontalface_alt2.xml
haarcascade_frontalface_default.xml
haarcascade_fullbody.xml
haarcascade_lefteye_2splits.xml
haarcascade_licence_plate_rus_16stages.xml
haarcascade_lowerbody.xml
haarcascade_profileface.xml
haarcascade_righteye_2splits.xml
haarcascade_russian_plate_number.xml
haarcascade_smile.xml
haarcascade_upperbody.xml

通过加载不同的特征文件,就能达到相应的检测效果。

OpenCV3.2.0中detectMultiScale函数参数说明:
detectMultiScale(Mat image, MatOfRect objects, double scaleFactor, int minNeighbors, int flags, Size minSize, Size maxSize)
image:待检测图片,一般为灰度图(提高效率)
objects:被检测物体的矩形框向量组
scaleFactor:前后两次相继的扫描中,搜索窗口的比例系数。默认为1.1即每次搜索窗口依次扩大10%
minNeighbors:构成检测目标的相邻矩形的最小个数(默认为3个)
flags:要么使用默认值,要么使用CV_HAAR_DO_CANNY_PRUNING,如果设置为CV_HAAR_DO_CANNY_PRUNING,那么函数将会使用Canny边缘检测来排除边缘过多或过少的区域,因此这些区域通常不会是人脸所在区域
minSize:得到的目标区域的最小范围
maxSize:得到的目标区域的最大范围

人脸检测示例代码:

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
public class FaceDetect
{

  public static void main(String[] args)
  {
    // TODO Auto-generated method stub
    System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
    System.out.println("\nRunning FaceDetector");
    CascadeClassifier faceDetector = new CascadeClassifier();
    faceDetector.load(
        "C:\\Program Files\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
    Mat image = Imgcodecs.imread("F:\\1114.jpg");

    MatOfRect faceDetections = new MatOfRect();
    faceDetector.detectMultiScale(image, faceDetections);
    System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
    for (Rect rect : faceDetections.toArray())
    {
      Imgproc.rectangle(image, new Point(rect.x, rect.y),
          new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
    }

    String filename = "F:\\ouput.jpg";
    Imgcodecs.imwrite(filename, image);
  }
}

源图像与结果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文