Java中二叉树的建立和各种遍历实例代码
作者:GavinZhou_xd
这篇文章主要介绍了Java中二叉树的建立和各种遍历实例代码,涉及树节点的定义,后序遍历,层序遍历,深度优先和广度优先等相关内容,具有一定借鉴价值,需要的朋友可以参考下
这是个常见的面试题,比如说通过二叉树的先序和中序遍历,得到二叉树的层序遍历等问题
先序+中序->建树
假设现在有个二叉树,如下:
此时遍历顺序是:
PreOrder: GDAFEMHZ InOrder: ADEFGHMZ PostOrder: AEFDHZMG
现在给出先序(preOrder)和中序(InOrder),建立一颗二叉树
或者给出中序(InOrder)和后序(PostOrder), 建立二叉树,其实是一样的
树节点的定义:
class Tree{ char val; Tree left; Tree right; Tree(char val, Tree left, Tree right){ this.val = val; this.left = left; this.right = right; } Tree(){ } Tree(char val){ this.val = val; this.left = null; this.right =null; } }
建树:
public static Tree buildTree(char[] preOrder, char[] inOrder){ //preOrder是先序序列 //inOrder是中序序列 if(preOrder == null || preOrder.length == 0){ return null; } Tree root = new Tree(preOrder[0]); //找到inOrder中的root的位置 int inOrderIndex = 0; for (char i = 0; i < inOrder.length; i++){ if(inOrder[i] == root.val){ inOrderIndex = i; } } //preOrder的左子树和右子树部分 char[] preOrderLeft = Arrays.copyOfRange(preOrder, 1, 1+inOrderIndex); char[] preOrderRight = Arrays.copyOfRange(preOrder, 1+inOrderIndex, preOrder.length); //inOrder的左子树和右子树部分 char[] inOrderLeft = Arrays.copyOfRange(inOrder, 0, inOrderIndex); char[] inOrderRight = Arrays.copyOfRange(inOrder, inOrderIndex+1, inOrder.length); //递归建立左子树和右子树 Tree leftChild = buildTree(preOrderLeft, inOrderLeft); Tree rightChild = buildTree(preOrderRight, inOrderRight); root.left = leftChild; root.right = rightChild; return root; }
中序+后序去建树其实是一样的,此处不写了
各种遍历
后序遍历
public static void postOrderPrint(Tree root){ //后续遍历 //左右根 if(root.left != null){ postOrderPrint(root.left); } if(root.right != null){ postOrderPrint(root.right); } System.out.print(root.val + " "); }
举一反三,先序和中序是一样的,此处不写了
层序遍历
可以用一个队列Queue,初始先把root节点加入到队列,当队列不为空的时候取队列头的节点node,打印node的节点值,如果node的左右孩子不为空将左右孩子加入到队列中即可
public static void layerOrderPrint(Tree root){ if(root == null){ return; } //层序遍历 Queue<Tree> qe = new LinkedList<Tree>(); qe.add(root); while(!qe.isEmpty()){ Tree node = qe.poll(); System.out.print(node.val + " "); if(node.left != null){ qe.add(node.left); } if(node.right != null){ qe.add(node.right); } } }
深度优先和广度优先
其实就是换个说法而已,深度优先不就是先序遍历嘛,广度优先就是层序遍历
public static void deepFirstPrint(Tree root){ //深度优先遍历等价于先序遍历 //所以可以直接使用先序遍历 if(root == null){ return; } System.out.print(root.val + " "); if(root.left != null){ deepFirstPrint(root.left); } if(root.right != null){ deepFirstPrint(root.right); } } public static void deepFirstPrintNoneRec(Tree root){ //深度优先遍历的非递归形式 if(root == null){ return; } Stack<Tree> st = new Stack<Tree>(); st.add(root); while(!st.isEmpty()){ Tree node = st.pop(); System.out.print(node.val + " "); //栈是后进先出的 //先加右孩子后加左孩子 if(node.right != null){ st.add(node.right); } if(node.left != null){ st.add(node.left); } } }
main函数:
public static void main(String[] args) { char[] preOrder = "GDAFEMHZ".toCharArray(); char[] inOrder = "ADEFGHMZ".toCharArray(); Tree root = Main.buildTree(preOrder, inOrder); // Main.postOrderPrint(root); //后序遍历 // Main.layerOrderPrint(root); //层序遍历 // Main.deepFirstPrint(root); //深度优先遍历 // Main.deepFirstPrintNoneRec(root); //深度优先遍历的非递归版本 }
总结
以上就是本文关于Java中二叉树的建立和各种遍历实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
您可能感兴趣的文章:
- java栈实现二叉树的非递归遍历的示例代码
- Java二叉树的四种遍历(递归和非递归)
- JAVA二叉树的几种遍历(递归,非递归)实现
- java二叉树的几种遍历递归与非递归实现代码
- java二叉树的非递归遍历
- java 对称二叉树的判断
- Java 最优二叉树的哈夫曼算法的简单实现
- Java实现二叉树的建立、计算高度与递归输出操作示例
- java编程题之从上往下打印出二叉树
- java实现按层遍历二叉树
- java实现二叉树遍历的三种方式
- Java二叉树的遍历思想及核心代码实现
- Java实现二叉树的深度优先遍历和广度优先遍历算法示例
- Java实现打印二叉树所有路径的方法
- Java实现的二叉树常用操作【前序建树,前中后递归非递归遍历及层序遍历】
- java编程求二叉树最大路径问题代码分析
- Java二叉树路径和代码示例
- Java源码解析之平衡二叉树