python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python解决mysql视图导入导出依赖的问题

利用python解决mysql视图导入导出依赖的问题

作者:zhoutk

这篇文章主要给大家介绍了关于利用python解决mysql视图导入导出依赖的问题,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。

视图

视图是一个虚拟表(非真实存在),其本质是根据SQL语句获取动态的数据集,并为其命名,用户使用时只需使用名称即可获取结果集,并可以将其当作表来使用。

创建视图

创建一个名称为v1的视图,其功能就是查询color表中的所有数据

CREATE VIEW v1 AS SELECT * FROM color;

查看视图

使用视图时,将其当作表进行操作即可,由于视图是虚拟表,所以无法使用其对真实表进行创建、更新和删除操作,仅能做查询用。

select * from v1; -- 等于执行SELECT * FROM color

输出结果

+-----+--------+
| nid | title |
+-----+--------+
| 1 | red |
| 2 | yellow |
+-----+--------+
2 rows in set (0.00 sec)

修改视图

ALTER VIEW v1 AS SELECT * FROM color WHERE nid = 1;

删除视图

DROP VIEW v1;

引用

navicat是mysql可视化工具中最棒的,但是,在处理视图的导入导出方面,它是按照视图名称的字母顺序来处理的,若视图存在依赖,在导入过程中就会报错。这个问题一直困绕我,一度因为我使用docker来部署mysql而绕过了这个问题。最近不得不直面这个问题,因此,写了一个小工具来解决它。

整体思路

在mysql很容易查出所有视图和其定义,因此可以写一个视图导出工具,存储时对各视图的保存位置进行调整,处理好它们之间的依赖关系,被依赖的放前面,这样就解决了导入时的依赖问题。

获取视图信息

运行以下查询语句,就能获得该数据库中所有视图的信息。

select * from information_schema.VIEWS where TABLE_SCHEMA = DatabaseName

查询结果字段说明:

总之,所有视图的信息都在这个表中保存,我要完成任务,只需要TABLE_NAME和VIEW_DEFINITION就可以了。

算法描述

process_rely函数算法描述:

    第一层循环,从rely_old中取一个视图名称

        第二层循环,从dict中取出一个键值

            若键值被第一层元素的定义所依赖

                若键值还不在结果数组中

                    若第一层元素不在结果数组中

                        追加键值到结果数组中

                    第一层元素在结果数组中

                        将键值插入到第一层元素前

                键值在结果数组中

                    第一层元素在结果数组中

                        查找各自在结果数组中的位置

                        若第一层元素在键值的后

                            将键值移动到第一层元素前

        第二层循环结束时,若第一层元素还不在结果集中

            将第一层元素追加到结果集中

    返回结果集

上面的说明,是按python代码模式给出的。很幸运,算法一次就能将复杂的依赖关系处理好了。我在编写的过程中,刚开始依赖算法不完善时,通过多次迭代也能处理好复杂的依赖关系。因此,坚定了必胜的信心,完成了这个任务。

完整代码

import pymysql
conn = pymysql.connect(host='172.17.0.1', port=3306, user='root',
      passwd='123456', db='database', charset='utf8mb4')
def process_rely(parmas={}, rely_old=[]):
 _rely = []
 _keys = list(parmas.keys())
 for k in rely_old:
  for bl in _keys:
   if str(parmas[k]).find(bl) > -1:
    if bl not in _rely:
     if k not in _rely:
      _rely.append(bl)
     else:
      i = _rely.index(k)
      _rely.insert(i, bl)
    else:
     if k in _rely:
      i = _rely.index(k)
      j = _rely.index(bl)
      if i < j:
       del _rely[j]
       _rely.insert(i, bl)
  if k not in _rely:
   _rely.append(k)
 return _rely
cur = conn.cursor()
cur.execute('select TABLE_NAME, VIEW_DEFINITION from information_schema.VIEWS where TABLE_SCHEMA = %s ', 'database')
rs = cur.fetchall()
cur.close()
conn.close()
ps = {}
for al in rs:
 ps['`' + al[0] + '`'] = al[1]
rely = process_rely(ps, list(ps.keys()))
# rely = process_rely(ps, rely1)
file_object = open('view.sql', 'w')
for al in rely:
 file_object.write('DROP VIEW IF EXISTS ' + al + ';\n')
 file_object.write('CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`%` SQL SECURITY DEFINER VIEW ' + al +
      ' AS ' + ps[al] + ';\n\n')
file_object.close()

小结

思路要清晰,代码要一步步的向最终目标靠近,积跬步以至千里。在做这个工具时,一开始觉得很麻烦,依赖关系若是深层次的,可能一次处理不好,正因为采用的迭代的思想,最后才完成了一次迭代解决问题的完美结局。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

您可能感兴趣的文章:
阅读全文