python

关注公众号 jb51net

关闭
首页 > 脚本专栏 > python > python中deque用法

python中的deque基本用法详解

作者:AI浩

Python 中的 deque是一个低级别的、高度优化的双端队列,对于实现优雅、高效的Pythonic队列和堆栈很有用,这篇文章主要介绍了python中的deque基本用法的相关资料,需要的朋友可以参考下

摘要

deque(双端队列)是Python标准库collections模块中的一个类,它支持从两端快速添加和删除元素。deque为固定大小或者可变大小的队列提供了线程安全的实现,并且它比使用列表(list)来实现相同的功能更为高效

deque的主要特点和操作包括:

下面是deque的一些详细示例:

示例1:基本使用

from collections import deque

# 创建一个空的deque
d = deque()

# 从右侧添加元素
d.append('a')
d.append('b')
print(d)  # 输出:deque(['a', 'b'])

# 从左侧添加元素
d.appendleft('c')
print(d)  # 输出:deque(['c', 'a', 'b'])

# 从右侧移除元素
right_item = d.pop()
print(right_item)  # 输出:'b'
print(d)  # 输出:deque(['c', 'a'])

# 从左侧移除元素
left_item = d.popleft()
print(left_item)  # 输出:'c'
print(d)  # 输出:deque(['a'])

示例2:使用maxlen限制队列长度

from collections import deque

# 创建一个最大长度为3的deque
d = deque(maxlen=3)

# 添加元素
d.append('a')
d.append('b')
d.append('c')
print(d)  # 输出:deque(['a', 'b', 'c'], maxlen=3)

# 继续添加元素,最早添加的元素'a'将被移除
d.append('d')
print(d)  # 输出:deque(['b', 'c', 'd'], maxlen=3)

# 尝试从左侧添加元素,同样会移除最早添加的元素
d.appendleft('e')
print(d)  # 输出:deque(['e', 'c', 'd'], maxlen=3)

示例3:使用deque实现滑动窗口算法

滑动窗口算法常用于数组或列表的子序列问题,如寻找最大/最小子序列和。

from collections import deque

def max_sliding_window(nums, k):
    # 使用deque保存窗口中的最大值索引
    window = deque()
    result = []

    for i in range(len(nums)):
        # 如果deque不为空且当前元素大于deque尾部元素对应的值,则移除尾部元素
        while window and nums[window[-1]] <= nums[i]:
            window.pop()
        # 添加当前元素的索引到deque
        window.append(i)
        # 当窗口大小达到k时,开始记录窗口内的最大值,并尝试移动窗口左边界
        if i >= k - 1:
            result.append(nums[window[0]])  # window[0]是当前窗口内最大值的索引
            # 如果deque头部的索引已经不在当前窗口内,则移除头部索引
            if window[0] <= i - k:
                window.popleft()

    return result

nums = [1, 3, -1, -3, 5, 3, 6, 7]
k = 3
print(max_sliding_window(nums, k))  # 输出:[3, 3, 5, 5, 6, 7]

在这个例子中,deque用于存储当前窗口内元素值的索引,通过维护一个递减的索引队列,我们可以快速找到窗口内的最大值。当窗口向右滑动时,我们更新队列并记录每个窗口的最大值。

在Python中,collections.deque 是一个非常实用的双向队列实现,它可以高效地在队列两端添加或移除元素。以下是一些使用 deque 的示例:

示例 4: 使用 deque 实现旋转数组

from collections import deque

def rotate_array(nums, k):
    dq = deque(nums)
    dq.rotate(-k)  # 逆时针旋转 k 位,如果是顺时针旋转则直接写 k
    return list(dq)

nums = [1, 2, 3, 4, 5, 6, 7]
k = 3
rotated_nums = rotate_array(nums, k)
print(rotated_nums)  # 输出: [5, 6, 7, 1, 2, 3, 4]

示例 5: 使用 deque 实现最大/最小栈

from collections import deque

class MaxStack:
    def __init__(self):
        self.stack = deque()
        self.max_stack = deque()

    def push(self, x):
        self.stack.append(x)
        if not self.max_stack or x >= self.max_stack[-1]:
            self.max_stack.append(x)

    def pop(self):
        if self.stack:
            if self.stack[-1] == self.max_stack[-1]:
                self.max_stack.pop()
            return self.stack.pop()
        return None

    def top(self):
        return self.stack[-1] if self.stack else None

    def getMax(self):
        return self.max_stack[-1] if self.max_stack else None

# 使用示例
max_stack = MaxStack()
max_stack.push(5)
max_stack.push(7)
max_stack.push(1)
max_stack.push(5)
print(max_stack.getMax())  # 输出: 7
max_stack.pop()
print(max_stack.top())  # 输出: 5
print(max_stack.getMax())  # 输出: 7

在这个例子中,MaxStack 类使用两个 deque:一个用于存储栈的元素,另一个用于存储当前栈中的最大值。这样,我们可以在常数时间内获取栈顶的最大值

示例 6: 使用 deque 实现广度优先搜索(BFS)

在图的遍历中,deque 常用于实现广度优先搜索(BFS)。

from collections import deque

def bfs(graph, root):
    visited = set()
    queue = deque([root])

    while queue:
        vertex = queue.popleft()
        print(vertex, end=" ")

        for neighbour in graph[vertex]:
            if neighbour not in visited:
                visited.add(neighbour)
                queue.append(neighbour)

# 图的邻接表表示
graph = {
    'A': ['B', 'C'],
    'B': ['D', 'E'],
    'C': ['F'],
    'D': [],
    'E': ['F'],
    'F': []
}

bfs(graph, 'A')  # 输出: A B C D E F

在上面的例子中,我们使用 deque 作为队列来存储待访问的节点,实现了图的广度优先搜索。

这些示例展示了 deque 在不同场景下的应用,从基本的队列操作到更复杂的算法实现。deque 的灵活性和高效性使得它成为处理序列数据的强大工具。

总结

到此这篇关于python中的deque基本用法的文章就介绍到这了,更多相关python中deque用法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
阅读全文