Python基于回溯法子集树模板解决选排问题示例
作者:罗兵
这篇文章主要介绍了Python基于回溯法子集树模板解决选排问题,简单描述了选排问题并结合实例形式分析了Python使用回溯法子集树模板解决选排问题的具体实现步骤与相关操作注意事项,需要的朋友可以参考下
本文实例讲述了Python基于回溯法子集树模板解决选排问题。分享给大家供大家参考,具体如下:
问题
从n个元素中挑选m个元素进行排列,每个元素最多可重复r次。其中m∈[2,n],r∈[1,m]。
如:从4个元素中挑选3个元素进行排列,每个元素最多可重复r次。
分析
解x的长度是固定的,为m。
对于解x,先排第0个位置的元素x[0],再排第1个位置的元素x[1]。我们把后者看作是前者的一种状态,即x[1]是x[0]的一种状态!!
一般地,把x[k]看作x[k-1]的状态空间a中的一种状态,我们要做的就是遍历a[k-1]的所有状态。
那么,套用子集树模板即可。
代码
''' 选排问题 从n个元素中挑选m个元素进行排列,每个元素最多可重复r次。其中m∈[2,n],r∈[1,m]。 作者:hhh5460 时间:2017年6月2日 09时05分 声明:此算法版权归hhh5460所有 ''' n = 4 a = ['a','b','c','d'] m = 3 # 从4个中挑3个 r = 2 # 每个元素最多可重复2 x = [0]*m # 一个解(m元0-1数组) X = [] # 一组解 # 冲突检测 def conflict(k): global n, r, x, X, a # 部分解内的元素x[k]不能超过r if x[:k+1].count(x[k]) > r: return True return False # 无冲突 # 用子集树模板实现选排问题 def perm(k): # 到达第k个元素 global n,m, a, x, X if k == m: # 超出最尾的元素 print(x) #X.append(x[:]) # 保存(一个解) else: for i in a: # 遍历x[k-1]的状态空间a,其它的事情交给剪枝函数! x[k] = i if not conflict(k): # 剪枝 perm(k+1) # 测试 perm(0) # 从x[0]开始排列
效果图
更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。