java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > java实现随机森林

java实现随机森林RandomForest的示例代码

作者:九佾

本篇文章主要介绍了java实现随机森林RandomForest的示例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

随机森林是由多棵树组成的分类或回归方法。主要思想来源于Bagging算法,Bagging技术思想主要是给定一弱分类器及训练集,让该学习算法训练多轮,每轮的训练集由原始训练集中有放回的随机抽取,大小一般跟原始训练集相当,这样依次训练多个弱分类器,最终的分类由这些弱分类器组合,对于分类问题一般采用多数投票法,对于回归问题一般采用简单平均法。随机森林在bagging的基础上,每个弱分类器都是决策树,决策树的生成过程中中,在属性的选择上增加了依一定概率选择属性,在这些属性中选择最佳属性及分割点,传统做法一般是全部属性中去选择最佳属性,这样随机森林有了样本选择的随机性,属性选择的随机性,这样一来增加了每个分类器的差异性、不稳定性及一定程度上避免每个分类器的过拟合(一般决策树有过拟合现象),由此组合分类器增加了最终的泛化能力。下面是代码的简单实现

/**
 * 随机森林 回归问题
 * @author ysh  1208706282
 *
 */
public class RandomForest {
  List<Sample> mSamples;
  List<Cart> mCarts;
  double mFeatureRate;
  int mMaxDepth;
  int mMinLeaf;
  Random mRandom;
  /**
   * 加载数据  回归树
   * @param path
   * @param regex
   * @throws Exception
   */
  public void loadData(String path,String regex) throws Exception{
    mSamples = new ArrayList<Sample>();
    BufferedReader reader = new BufferedReader(new FileReader(path));
    String line = null;
    String splits[] = null;
    Sample sample = null;
    while(null != (line=reader.readLine())){
      splits = line.split(regex);
      sample = new Sample();
      sample.label = Double.valueOf(splits[0]);
      sample.feature = new ArrayList<Double>(splits.length-1);
      for(int i=0;i<splits.length-1;i++){
        sample.feature.add(new Double(splits[i+1]));
      }
      mSamples.add(sample);
    }
    reader.close();
  }
  public void train(int iters){
    mCarts = new ArrayList<Cart>(iters);
    Cart cart = null;
    for(int iter=0;iter<iters;iter++){
      cart = new Cart();
      cart.mFeatureRate = mFeatureRate;
      cart.mMaxDepth = mMaxDepth;
      cart.mMinLeaf = mMinLeaf;
      cart.mRandom = mRandom;
      List<Sample> s = new ArrayList<Sample>(mSamples.size());
      for(int i=0;i<mSamples.size();i++){
        s.add(mSamples.get(cart.mRandom.nextInt(mSamples.size())));
      }
      cart.setData(s);
      cart.train();
      mCarts.add(cart);
      System.out.println("iter: "+iter);
      s = null;
    }
  }
  /**
   * 回归问题简单平均法 分类问题多数投票法
   * @param sample
   * @return
   */
  public double classify(Sample sample){
    double val = 0;
    for(Cart cart:mCarts){
      val += cart.classify(sample);
    }
    return val/mCarts.size();
  }
  /**
   * @param args
   * @throws Exception 
   */
  public static void main(String[] args) throws Exception {
    // TODO Auto-generated method stub
    RandomForest forest = new RandomForest();
    forest.loadData("F:/2016-contest/20161001/train_data_1.csv", ",");
    forest.mFeatureRate = 0.8;
    forest.mMaxDepth = 3;
    forest.mMinLeaf = 1;
    forest.mRandom = new Random();
    forest.mRandom.setSeed(100);
    forest.train(100);
    
    List<Sample> samples = Cart.loadTestData("F:/2016-contest/20161001/valid_data_1.csv", true, ",");
    double sum = 0;
    for(Sample s:samples){
      double val = forest.classify(s);
      sum += (val-s.label)*(val-s.label);
      System.out.println(val+" "+s.label);
    }
    System.out.println(sum/samples.size()+" "+sum);
    System.out.println(System.currentTimeMillis());
  }

}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文