java

关注公众号 jb51net

关闭
首页 > 软件编程 > java > Java常用数字运算工具类

Java常用数字工具类 大数乘法、加法、减法运算(2)

作者:龙轩

这篇文章主要为大家详细介绍了Java常用数字工具类,大数乘法、加法、减法运算,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

上篇分享了一下数字转汉字的小功能,这里再分享一下大数相乘、相加、相减的功能。其他的不做过多的铺垫了,我先讲一下各个功能的计算原理。

Ⅰ. 乘法运算

为什么先说乘法运算——因为我先做了乘法运算。其实思路也是很多的,但是最终我参考了网络上的一种计算方案,然后做了很多的修改。感觉这个在思路上应该是比较简单的。

简单点说:把数拆分成整数小数分别进行乘法运算,然后将结果放入一个特定长度的数组中,在放入是要计算存放的偏移位置,最后再对这个进行处理(进位、标记等),得到最终的结果。
是不是有点晕。请我详细说一下吧:

这就是基本的思路了。后面又再次基础上加上了负数的判断、数字格式的判断等,自己看注释就可以明白了。
代码如下:

//标记为小数点 
private static final int DOT=-99; 
//标记为无效数字 
private static final int INVALID=-100; 
 
/** 
 * 大数乘法 
 * 
 * @param a  第一个数 
 * @param b  第二个数 
 * @return  最终结果 
 */ 
public static String multiply(String a, String b){ 
  //检查数字格式 
  checkNum(a); 
  checkNum(b); 
 
  //标记最终结果是否为负值 
  boolean minus=false; 
 
  //判断是否有带着-号 
  if(a.startsWith("-") || b.startsWith("-")){ 
    //判断是否全带着-号 
    if(a.startsWith("-") && b.startsWith("-")){ 
    }else{ 
      //只有1个带着-号,则结果为负值 
      minus=true; 
    } 
    if(a.startsWith("-")){ 
      a = a.substring(1); 
    } 
    if(b.startsWith("-")){ 
      b = b.substring(1); 
    } 
  } 
 
  //获取a,b的整数和小数部分 
  String a_int = getInt(a); 
  String a_fraction = getFraction(a); 
  String b_int = getInt(b); 
  String b_fraction = getFraction(b); 
 
  //计算小数部分的总长度 
  int len_fraction = a_fraction.length() +b_fraction.length() ; 
 
  //a,b两个数乘积的最大位数不会超过总位数之和+小数点(1位) 
  int len = len_fraction +a_int.length()+b_int.length()+1; 
 
  //创建结果数组 
  int[] result = new int[len];//默认全为0 
 
  //为了方便计算,去掉小数点(最后在结果中加上小数点) 
  //并将高低位对调(反转是为了低位对齐),最终转化为char数组 
  char[] s_a_int = reverseStr(a_int); 
  char[] s_a_fraction = reverseStr(a_fraction); 
  char[] s_b_int = reverseStr(b_int); 
  char[] s_b_fraction = reverseStr(b_fraction); 
 
  //将a、b都拆分成整数+小数,然后 
  //采用(x1+x2)(y1+y2)=x1y1+x1y2+x2y1+x2y2公式,分别计算乘积 
  multiply(s_a_int, s_b_int, len_fraction, result); 
  multiply(s_a_int, s_b_fraction, (len_fraction-s_b_fraction.length), result); 
  multiply(s_b_int, s_a_fraction, (len_fraction-s_a_fraction.length), result); 
  multiply(s_a_fraction, s_b_fraction, 0, result); 
 
  // 处理结果集合,如果是大于10的就向前一位进位,本身进行除10取余 
  accumulateResultArrays(result); 
 
  //标记小数点位置 
  markDot(len_fraction, result); 
 
  //切掉无用的0 
  cutUnusedZero(len_fraction, result); 
 
  //然后将数据反转 
  return (minus?"-":"") + reverseResult(result); 
} 
 
/** 
 * 反转字符串,并转化为数组 
 * 
 * @param s    原字符串 
 * @return 
 */ 
private static char[] reverseStr(String s) { 
  return new StringBuffer(s).reverse().toString().toCharArray(); 
} 
 
/** 
 * 计算2个数的每一位的乘积,放入到对应的结果数组中(未进位) 
 * 
 * @param a  第一个数 
 * @param b  第二个数 
 * @param start  开始放入的偏移位置 
 * @param result  结果数组 
 */ 
private static void multiply(char[] a, char[] b, int start , int[] result){ 
  // 计算结果集合 
  for (int i = 0; i < a.length; i++) { 
    for (int j = 0; j < b.length; j++) { 
      result[i + j + start] += (int) (a[i] - '0') * (int) (b[j] - '0'); 
    } 
  } 
} 
 
/** 
 * 累加每一位,超过10则然后进位 
 * 
 * @param result  结果数组 
 */ 
private static void accumulateResultArrays(int[] result) { 
  for (int i = 0; i < result.length; i++) { 
    if (result[i] >= 10) { 
      result[i + 1] += result[i] / 10; 
      result[i] %= 10; 
    } 
  } 
} 
 
/** 
 * 标记小数点位置 
 * 
 * @param len_fraction  小数长度 
 * @param result  结果数组(反转的) 
 */ 
private static void markDot(int len_fraction, int[] result) { 
  if(len_fraction>0){ 
    //标记小数点位置 
    for (int i = result.length-1 ; i > len_fraction; i--) { 
      result[i] = result[i-1]; 
    } 
    result[len_fraction]=DOT;//标记小数点位置 
  } 
} 
 
/** 
 * 去掉不必要的0(包括整数最前面的和小数最后面的0) 
 * 
 * @param len_fraction  小数长度 
 * @param result    结果数组 
 */ 
private static void cutUnusedZero(int len_fraction, int[] result) { 
  //去掉小数部分不必要的0 
  boolean flag_0_fraction = true;//标记一直是0 
  for (int i =0; i< len_fraction; i++) { 
    if(flag_0_fraction && result[i]==0){ 
      result[i]=INVALID;//为0时标记为无效 
    }else{ 
      flag_0_fraction=false; 
      break; 
    } 
  } 
 
  //去掉整数部分的0 
  boolean flag_0_int=true; 
  for (int i =result.length-1; i > len_fraction || (len_fraction==0 && i==0); i--) { 
    if(flag_0_int && result[i]==0){ 
      result[i]=INVALID;//为0时标记为无效 
    }else{ 
      flag_0_int=false;//遇到不为0时,停止。 
      break; 
    } 
  } 
  if(flag_0_int){//整数部分全为0 
    result[len_fraction+1]=0; 
    if(flag_0_fraction){//同时,小数部分也全为0 
      result[len_fraction]=INVALID;//不需要小数点了,所以置为无效 
    } 
  }else{//整数部分不为0 
    if(flag_0_fraction && len_fraction>0){//小数部分全为0 
      result[len_fraction]=INVALID;//不需要小数点了,所以置为无效 
    } 
  } 
} 
 
/** 
 * 反转结果,替换小数点,跳过无效的0 
 * 
 * @param result    结果数组 
 * @return 
 */ 
private static String reverseResult(int[] result) { 
  //反转 
  StringBuffer sb = new StringBuffer(); 
  for (int i = result.length - 1; i >= 0; i--) { 
    if(result[i]>INVALID){ 
      sb.append(result[i]==DOT ? "." : result[i]); 
    } 
  } 
  return sb.toString(); 
} 

我们继续说第二个。

Ⅱ. 加法运算

有了上面的思路做铺垫,下面的加法和减法基本上都可以秒懂了。负数及数字格式的判断就直接略过了。直接说最基本的思路。

代码放在最后看吧。接着来说说减法。

Ⅲ. 减法运算

其实减法跟加法在代码上看,更类似。详细说一下:(忽略负数及数字格式的判断)

具体代码如下:

/** 
 * 大数加法 
 * 
 * @param a  第一个数 
 * @param b  第二个数 
 * @return  最终结果 
 */ 
public static String add(String a, String b){ 
  //检查数字格式 
  checkNum(a); 
  checkNum(b); 
 
  //标记最终结果是否为负值 
  boolean minus=false; 
 
  //判断是否有带着-号 
  if(a.startsWith("-") || b.startsWith("-")){ 
    //判断是否全带着-号 
    if(a.startsWith("-") && b.startsWith("-")){ 
      //2个都带着-号,结果肯定为负值 
      minus=true; 
      if(a.startsWith("-")){ 
        a = a.substring(1); 
      } 
      if(b.startsWith("-")){ 
        b = b.substring(1); 
      } 
    }else{ 
      //如果只有一个是负值,则调用减法来完成操作 
      if(a.startsWith("-")){//a是负数 
        a = a.substring(1); 
        return subduct(b, a); 
      }else{ 
        b = b.substring(1); 
        return subduct(a, b); 
      } 
 
    } 
  } 
 
  //获取a,b的整数和小数部分 
  String a_int = getInt(a); 
  String a_fraction = getFraction(a); 
  String b_int = getInt(b); 
  String b_fraction = getFraction(b); 
 
  //计算小数部分最大长度 
  int len_fraction = Math.max(a_fraction.length(), b_fraction.length()); 
 
  //计算整数部分最大长度 
  int len_int = Math.max(a_int.length(), b_int.length())+1; 
 
  //a,b两个数整数最大长度和小数最大长度之和+小数点(1位) 
  int len = len_fraction + len_int+1; 
 
  //创建结果数组 
  int[] result = new int[len];//默认全为0 
 
  //为了方便计算,去掉小数点(最后在结果中加上小数点) 
  //将【整数部分】高低位对调(反转是为了低位对齐),最终转化为char数组 
  //小数部分不用调整 
  char[] s_a_int = reverseStr(a_int); 
  char[] s_b_int = reverseStr(b_int); 
  char[] s_a_fraction = a_fraction.toCharArray(); 
  char[] s_b_fraction = b_fraction.toCharArray(); 
 
  //采用整数+整数,小数+小数的方式运算 
  add(s_a_int, s_b_int, len_fraction, result); 
  add(s_a_fraction, s_b_fraction, 1-len_fraction, result); 
 
  // 处理结果集合,如果是大于10的就向前一位进位,本身进行除10取余 
  accumulateResultArrays(result); 
 
  //标记小数点位置 
  markDot(len_fraction, result); 
 
  //切掉无用的0 
  cutUnusedZero(len_fraction, result); 
 
  //然后将数据反转 
  return (minus ? "-" : "")+reverseResult(result); 
} 
 
/** 
 * 计算2个数的每一位的和,放入到对应的结果数组中(未进位) 
 * 
 * @param a  第一个数 
 * @param b  第二个数 
 * @param start  开始放入的偏移位置 
 * @param result  结果数组 
 */ 
private static void add(char[] a, char[] b, int start , int[] result){ 
  char[] c=null; 
  //保证a是位数多的,如果b长度大于a,则交换a,b 
  if(b.length>a.length){ 
    c=a; 
    a=b; 
    b=c; 
  } 
  // 计算结果集合,a的位数>=b的位数 
  int i = 0, j=0; 
  for (; i < a.length && j< b.length; i++,j++) { 
    result[Math.abs(i + start)] += (int) (a[i] - '0') + (int) (b[j] - '0'); 
  } 
  //如果a没有处理完毕,直接把a剩下的值赋值给结果数组即可 
  for (; i < a.length; i++) { 
    result[Math.abs(i + start)] += (int) (a[i] - '0'); 
  } 
  if(c!=null){//如果交换过,则再交换回来 
    c=a; 
    a=b; 
    b=c; 
  } 
  c=null; 
} 
 
/** 
 * 大数减法 
 * 
 * @param a  第一个数 
 * @param b  第二个数 
 * @return  最终结果 
 */ 
public static String subduct(String a, String b){ 
  //检查数字格式 
  checkNum(a); 
  checkNum(b); 
 
  //标记最终结果是否为负值 
  boolean minus=false; 
 
  //判断是否有带着-号 
  if(a.startsWith("-") || b.startsWith("-")){ 
    //判断是否全带着-号 
    if(a.startsWith("-") && b.startsWith("-")){ 
      //2个都带着-号 
      if(a.startsWith("-")){ 
        a = a.substring(1); 
      } 
      if(b.startsWith("-")){ 
        b = b.substring(1); 
      } 
      return subduct(b, a); 
    }else{ 
      //如果只有一个是负值,则调用加法来完成操作 
      if(a.startsWith("-")){//a是负值,b是非负值 
        return add(a, "-"+b);//2个负值的加法运算 
      }else{//b是负值 
        b = b.substring(1); 
        return add(a, b);//2个正值的加法运算 
      } 
    } 
  } 
 
  //获取a,b的整数和小数部分 
  String a_int = getInt(a); 
  String a_fraction = getFraction(a); 
  String b_int = getInt(b); 
  String b_fraction = getFraction(b); 
 
  boolean isSame = false; 
  //判断大小 
  if(b_int.length()>a_int.length()){ 
    //如果b>a 
    return "-"+subduct(b, a); 
  }else if(b_int.length()==a_int.length()){ 
    char[] s_a = a_int.toCharArray(); 
    char[] s_b = b_int.toCharArray(); 
    for (int i = 0; i < s_a.length; i++) { 
      if(s_b[i]>s_a[i]){ 
        minus=true; 
        isSame=false; 
        break; 
      }else if(s_b[i]<s_a[i]){ 
        isSame=false; 
        break; 
      }else{ 
        isSame = true; 
      } 
    } 
    if(isSame){//整数部分全部相同,对比小数部分 
      s_a = a_fraction.toCharArray(); 
      s_b = b_fraction.toCharArray(); 
      for (int i = 0; i < Math.min(s_a.length, s_b.length); i++) { 
        if(s_b[i]>s_a[i]){ 
          minus=true; 
          isSame=false; 
          break; 
        }else if(s_b[i]<s_a[i]){ 
          isSame=false; 
          break; 
        }else{ 
          isSame = true; 
        } 
      } 
      if(isSame){//前部分全相同 
        if(s_b.length>s_a.length){//前部分全相同,b小数位数多,则 b>a 
          return "-"+subduct(b, a); 
        }else if(s_b.length == s_a.length){ 
          return "0"; 
        } 
      }else if(minus){//如果b>a 
        return "-"+subduct(b, a); 
      } 
    } 
  } 
 
 
  //计算小数部分最大长度 
  int len_fraction = Math.max(a_fraction.length(), b_fraction.length()); 
 
  //计算整数部分最大长度 
  int len_int = Math.max(a_int.length(), b_int.length()); 
 
  //a,b两个数整数最大长度和小数最大长度之和+小数点(1位) 
  int len = len_fraction + len_int+1; 
 
  //创建结果数组 
  int[] result = new int[len];//默认全为0 
 
  //为了方便计算,去掉小数点(最后在结果中加上小数点) 
  //将【整数部分】高低位对调(反转是为了低位对齐),最终转化为char数组 
  //小数部分不用调整 
  char[] s_a_int = reverseStr(a_int); 
  char[] s_b_int = reverseStr(b_int); 
  char[] s_a_fraction = a_fraction.toCharArray(); 
  char[] s_b_fraction = b_fraction.toCharArray(); 
 
  //采用整数+整数,小数+小数的方式运算 
  subduct(s_a_int, s_b_int, len_fraction, result); 
  subduct(s_a_fraction, s_b_fraction, 1-len_fraction, result); 
 
  // 处理结果集合,如果是大于10的就向前一位进位,本身进行除10取余 
  subductResultArrays(result); 
 
  //标记小数点位置 
  markDot(len_fraction, result); 
 
  //切掉无用的0 
  cutUnusedZero(len_fraction, result); 
 
  //然后将数据反转 
  return (minus ? "-" : "")+reverseResult(result); 
} 
 
/** 
 * 计算2个数的每一位的差,放入到对应的结果数组中(未进位) 
 * 
 * @param a  第一个数 
 * @param b  第二个数 
 * @param start  开始放入的偏移位置 
 * @param result  结果数组 
 */ 
private static void subduct(char[] a, char[] b, int start , int[] result){ 
  // 计算结果集合,a的位数>=b的位数 
  int i = 0, j=0; 
  for (; i < a.length && j< b.length; i++,j++) { 
    result[Math.abs(i + start)] +=((int) (a[i] - '0') - (int) (b[j] - '0')); 
  } 
  //如果a没有处理完毕,直接把a剩下的值赋值给结果数组即可 
  for (; i < a.length; i++) { 
    result[Math.abs(i + start)] +=((int) (a[i] - '0')); 
  } 
  //如果a没有处理完毕,直接把a剩下的值赋值给结果数组即可 
  for (; i < b.length; i++) { 
    result[Math.abs(i + start)] +=-((int) (b[i] - '0')); 
  } 
} 
 
/** 
 * 检查每一位,小于0(不含标记的小数点未和无效的0)则然后向高位借位。 
 * 
 * @param result  结果数组 
 */ 
private static void subductResultArrays(int[] result) { 
  for (int i = 0; i < result.length-1; i++) { 
    if (result[i] < 0 && result[i]>DOT) { 
      result[i + 1]--; 
      result[i] += 10; 
    } 
  } 
} 

写个main方法测试一下吧:

public static void main(String[] args) { 
  String a = "9213213210.4508"; 
  String b = "12323245512512100.4500081"; 
  String r = multiply(a, b); 
  System.out.println(a+"*"+b+"="+r); 
  String r1 = add(a, b); 
  System.out.println(a+"+"+b+"="+r1); 
  String r2 = subduct(a, b); 
  System.out.println(a+"-"+b+"="+r2); 
} 

测试结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

您可能感兴趣的文章:
阅读全文