C 语言

关注公众号 jb51net

关闭
首页 > 软件编程 > C 语言 > 二叉树几种遍历方法

C 语言二叉树几种遍历方法详解及实例

作者:小_马

这篇文章主要介绍了C 语言二叉树几种遍历方法详解及实例的相关资料,二叉树在数据结构当中是非常重要的知识要点,这里对二叉树进行了总结,需要的朋友可以参考下

二叉树的一些概念

二叉树就是每个结点最多有两个子树的树形存储结构。先上图,方便后面分析。


 1 满二叉树和完全二叉树 

上图就是典型的二叉树,其中左边的图还叫做满二叉树,右边是完全二叉树。然后我们可以得出结论,满二叉树一定是完全二叉树,但是反过来就不一定。满二叉树的定义是除了叶子结点,其它结点左右孩子都有,深度为k的满二叉树,结点数就是2的k次方减1。完全二叉树是每个结点都与深度为k的满二叉树中编号从1到n一一对应。

 2 树的深度

树的最大层次就是深度,比如上图,深度是4。很容易得出,深度为k的树,拥有的最大结点数是2的k次方减1。

 3 树的孩子,兄弟,双亲

上图中,B,C是A的孩子,B,C之间互为兄弟,A是B,C的双亲。

 二如何创建二叉树

先说说二叉树的存储结构,跟很多其它模型一样,也有顺序和链式两种方式。前者虽然使用简单,但是存在浪费空间的问题,举个例子,下图的二叉树,用顺序的方式存储(0表示空,没有子树)是:

1 2 3 4 5 6 7 0 0 0 0 8 0 0 0


 是不是相当浪费空间呢。

 链式结构可以定义如下:

typedef struct _BiTNode 
{ 
  int data; 
  _BiTNode *leftChild; 
  _BiTNode *rightChild; 
}BiTNode, *pBiTree; 

然后就可以写一个函数来创建二叉树,过程是在控制台输入a表示退出当前这一层,不再为该层创建左右孩子。输入其它字母表示继续创建。比如下面的输入序列:


 创建了如下结构的二叉树,


 每个结点里的数值是随机生成的小于100的数字。同时我也写了一个自动的命令序列函数,方便测试,不用手动输入,非自动和自动创建的函数如下:

//创建二叉树, 先序顺序 
int CreateBiTree(pBiTree *root) 
{ 
  char ch = 0; 
  fflush(stdin); 
  if ((ch = getchar()) == 'a')//控制树的结构 
  { 
    *root = NULL; 
  } 
  else 
  { 
    *root = (BiTNode *)malloc(sizeof(BiTNode)); 
    if (!(*root)) 
    { 
      return RET_ERROR; 
    } 
    (*root)->data = GetRandom(); 
    CreateBiTree(&(*root)->leftChild); 
    CreateBiTree(&(*root)->rightChild); 
  } 
  return RET_OK; 
} 
 
int g_i = 0; 
//创建二叉树,自动执行,方便测试 
int CreateBiTreeAuto(pBiTree *root) 
{ 
  char szOrder[] = "bbaabaa"; 
  char ch = 0; 
  if (szOrder[g_i++] == 'a')//控制树的结构 
  { 
    *root = NULL; 
  } 
  else 
  { 
    *root = (BiTNode *)malloc(sizeof(BiTNode)); 
    if (!(*root)) 
    { 
      return RET_ERROR; 
    } 
    (*root)->data = GetRandom(); 
    CreateBiTreeAuto(&(*root)->leftChild); 
    CreateBiTreeAuto(&(*root)->rightChild); 
  } 
  return RET_OK; 
} 

三遍历顺序

先序遍历

先序遍历是先访问根结点,再左子树,再右子树,比如图1中的右图,先序遍历的输出如下:

A,B,D,H,I,E,J,K,C,F,G

根据上面的思想,很容易用递归的形式写出先序遍历的代码:

//先序遍历 
int PreOrderVisitTree(pBiTree T, VisitType pFuncVisit) 
{ 
  if (T) 
  { 
    (*pFuncVisit)(T->data); 
    if (PreOrderVisitTree(T->leftChild, pFuncVisit) == RET_OK) 
    { 
      if (PreOrderVisitTree(T->rightChild, pFuncVisit) == RET_OK) 
      { 
        return RET_OK; 
      } 
    } 
    return RET_ERROR; 
  } 
  else 
  { 
    return RET_OK; 
  } 
} 

中序遍历和后序遍历

有了先序的经验,这两个就很好理解了,中序是先访问左子树, 再根结点,再右子树, 后序是先访问左子树, 再右子树,再根结点。代码更容易,只要改一下调用顺序就可以了。

不过我这里给出一种非递归的实现。递归固然是清晰明了,但是存在效率低的问题,非递归的方案用栈结构来存结点信息,通过出栈访问来遍历二叉树。它思想是这样的,当栈顶中的指针非空时,遍历左子树,也就是左子树根的指针进栈。当栈顶指针为空时,应退至上一层,如果是从左子树返回的,访问当前层,也就是栈顶中的根指针结点。如果是从右子树返回,说明当前层遍历完毕,继续退栈。代码如下:

//中序遍历, 非递归实现 
int InOrderVisitTree(pBiTree T, VisitType pFuncVisit) 
{ 
  ponyStack binaryTreeStack; 
  InitStack(&binaryTreeStack, 4); 
  Push(&binaryTreeStack, &T); 
  pBiTree pTempNode; 
 
  while (!IsEmptyStack(binaryTreeStack)) 
  { 
    while((GetTop(binaryTreeStack, &pTempNode) == RET_OK) && (pTempNode != NULL)) 
    { 
      Push(&binaryTreeStack, &(pTempNode->leftChild)); 
    } 
    Pop(&binaryTreeStack, &pTempNode); 
    if (!IsEmptyStack(binaryTreeStack)) 
    { 
      Pop(&binaryTreeStack, &pTempNode); 
      (*pFuncVisit)(pTempNode->data); 
      Push(&binaryTreeStack, &(pTempNode->rightChild)); 
    } 
  } 
  return RET_OK; 
} 

代码下载地址:http://xiazai.jb51.net/201701/yuanma/BinaryTreeDemo-master(jb51.net).rar

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

您可能感兴趣的文章:
阅读全文