关于numpy.array的shape属性理解
作者:Lavi_qq_2910138025
这篇文章主要介绍了关于numpy.array的shape属性理解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
numpy.array的shape属性理解
numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数。有时候我们可能需要知道某一维的特定维数。
二维情况
>>> import numpy as np >>> y = np.array([[1,2,3],[4,5,6]]) >>> print(y) [[1 2 3] [4 5 6]] >>> print(y.shape) (2, 3) >>> print(y.shape[0]) 2 >>> print(y.shape[1]) 3
可以看到y是一个两行三列的二维数组,y.shape[0]代表行数,y.shape[1]代表列数。
三维情况
>>> x = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[0,1,2]],[[3,4,5],[6,7,8]]]) >>>> print(x) [[[1 2 3] [4 5 6]] [[7 8 9] [0 1 2]] [[3 4 5] [6 7 8]]] >>> print(x.shape) (3, 2, 3) >>> print(x.shape[0]) 3 >>> print(x.shape[1]) 2 >>> print(x.shape[2]) 3
可以看到x是一个包含了3个两行三列的二维数组的三维数组,x.shape[0]代表包含二维数组的个数,x.shape[1]表示二维数组的行数,x.shape[2]表示二维数组的列数。
心得
可以看到,shape[0]表示最外围的数组的维数,shape[1]表示次外围的数组的维数,数字不断增大,维数由外到内。
numpy数组array的shape属性-1维、2维
numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数。
有时候我们可能需要知道某一维的特定维数。
一维情况
二维情况
可以看到y是一个两行三列的二维数组,y.shape[0]代表行数,y.shape[1]代表列数
三维情况
可以看到x是一个包含了3个两行三列的二维数组的三维数组,x.shape[0]代表包含二维数组的个数,x.shape[1]表示二维数组的行数,x.shape[2]表示二维数组的列数。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。